98%
921
2 minutes
20
Post-wildfire erosion to downstream surface waters can deteriorate water quality to levels that can create challenges for aquatic life and drinking water treatment. Polymeric additives, xanthan gum (XG) and polyacrylamide (PAM), have been demonstrated to be effective for controlling erosion in the presence of hydrophilic ash. However, with repeated rainfall applications, some of the applied XG and PAM may mobilize with the runoff and enter surface waters, which may pose water quality concerns. In this study, indoor rainfall simulation experiments were performed on plots containing wildfire-burned soil overlaid by hydrophilic ash collected after the 2021 Green Ridge Wildfire near Walla Walla, WA. The plots were treated with three concentrations (11, 33, and 60 kg ha) of XG or PAM and subjected to three wet-dry cycles. Runoff water samples were collected at 5 min intervals during each wetting event. The pH, electrical conductivity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and settled water turbidity (SWT) were measured for runoff water samples. The presence of XG in runoff from XG-treated plots increased SWT by up to 247% and DOC to as high as 16.6 mg L. PAM treatment also increased DOC (up to 24.5 mg L) and TDN (up to 5.8 mg L) in runoff. DOC and TDN concentrations in runoff from treated plots increased with an increase in treatment concentrations and were generally greatest in the first wetting event. The results suggest that benefits of using polymeric additives for erosion reduction should be evaluated together with an assessment of dilution of downstream water bodies to alleviate the negative impacts of the additives on downstream water quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4em00334a | DOI Listing |
PLoS One
September 2025
The Institute of Port Information Digitalization, China Liaoning Port Group Co. Ltd., Dalian, Liaoning, China.
Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.
Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.
PLoS One
September 2025
Bureau of Qinghai Environmental Geological Prospecting, Xi'ning, China.
This study focuses on mineral groundwater in alpine regions and its sustainable exploitation. The Tongde basin on Tibetan Plateau was investigated to reveal the hydrochemistry and formation of mineral groundwater in alpine basins and its sustainable development under anthropogenic disturbances. The results show that groundwater there is characterized by enriched strontium, with concentrations in the range of 0.
View Article and Find Full Text PDFSoc Work Public Health
September 2025
School of Social Work, Jackson State University, Jackson, Mississippi, USA.
In 2021, Jackson, Mississippi, received national attention after a winter storm caused the failure of operations at the city's largest water treatment facility. Years of neglect to a crumbling infrastructure triggered the Jackson water crisis, leaving residents without clean and reliable access to water. Predating any one administration, Black and low-income residents had long raised concerns about excessive water bills, broken water mains, poor water quality, and deterioration of the city's water system.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes 6, 41012, Seville, Spain.
Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.
View Article and Find Full Text PDF