Exploring the protective mechanisms of syringaresinol against myocardial infarction by experimental validation and network pharmacology.

Biochim Biophys Acta Mol Basis Dis

Department of Molecular Pharmacology, School of Medicine, Beichen Hospital, Nankai University, Tianjin 300071, China; Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Ti

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Myocardial Infarction (MI) is a leading cause of mortality worldwide. Currently, effective treatments are still lacking. Increasing evidence supports the benefits of Syringaresinol (SYR) for the treatment of cardiovascular disease is accumulating. Nevertheless, whether SYR can alleviate MI is unknown. The study aims to investigate the protective effect of SYR against MI and elucidate its potential molecular mechanism. We found that SYR ameliorate MI-induced cardiac dysfunction, reduce infarct size, and alleviate myocardial hypertrophy, fibrosis, inflammation, as well as apoptosis. In addition, we collected targets related to SYR and MI through multiple databases, and obtained 281 potential therapeutic targets after intersection. GO and KEGG enrichment analysis found that these therapeutic targets were concentrated on inflammation, fibrosis, and apoptosis pathways. Based on the PPI network and combined with Centiscape2.2 and cytoHubba analysis, we obtained 10 hub proteins. The molecular docking results showed that SYR has strong bindings with 10 hub proteins. snRNA-seq data showed that CASP3 and NFKB1 were expressed in all cell types. In addition, the therapeutic targets of SYR are also mainly distributed in all cell types. Finally, we found that SYR could alleviate MI by partially reversing the expression of AKT1, EGFR, CASP3, SRC, NFKB1, HSP90AA1, HIF1A, MMP9 and ESR1 both in vivo and in vitro. Our findings suggested that SYR may protect against MI by reducing inflammatory, fibrotic and apoptotic effects via multiple targets and pathways, which provides a new theoretical foundation for the clinical therapy of MI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2025.167728DOI Listing

Publication Analysis

Top Keywords

therapeutic targets
12
syr
9
myocardial infarction
8
syr alleviate
8
targets syr
8
hub proteins
8
cell types
8
targets
5
exploring protective
4
protective mechanisms
4

Similar Publications

Mechanistic roles of long non-coding RNAs in DNA damage response and genome stability.

Mutat Res Rev Mutat Res

September 2025

Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Background: The high and increasing rate of poor mental health among young people is a matter of global concern. Experiencing poor mental health during this formative stage of life can adversely impact interpersonal relationships, academic and professional performance, and future health and well-being if not addressed early. However, only a few of those in need seek help.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the leading cause of dementia worldwide, with significant cognitive and behavioural impairments that devastate individuals and their families. Cohort-level findings, demonstrate the broader population-level implications of Sleep and Circadian Rhythm Disruption (SCRD) in AD and underscore the need for early interventions, emphasizing the importance of timely action. However, the mechanism remains unclear.

View Article and Find Full Text PDF