98%
921
2 minutes
20
Leishmania orientalis, previously called L. siamensis, is a new species characterized as causing cutaneous leishmaniasis in Thailand. This study solves the crystal structure of the L. orientalis triosephosphate isomerase (LoTIM) in apo form at 1.88 Å resolution by using molecular replacement method. Tyrosine118 presents in the LoTIM protein sequence, whereas L. mexicana and Trypanosoma cruzi TIMs have a relative Cys118, which plays a major role in their specific ligand binding. Sulfur atom of the Cys57 thiol group is covalently bound to an arsenic (As) atom present in the precipitating solution. Although the electron density of loop-6 (Gly174-Tyr175-Gly176-Lys177-Val178) is missing in the structure due to this region lacking rigidity, the biological assembly of the two monomers of the LoTIM crystal structures are like that of L. mexicana and T. cruzi. 3D molecular protein-ligand docking was performed using the dimeric interfacial pocket of the enzyme as a ligand-binding receptor to identify its specific inhibitors. Five potential inhibiting compounds, including NSC639174, NSC606498, NSC110039, NSC58446, and NSC345647, were obtained with their IC 2.79 ± 0.10, 3.28 ± 0.80, 3.67 ± 0.11, 4.59 ± 0.87 and 15.44 ± 0.14 μM, respectively. However, specific inhibition assays against TIMs from L. orientalis and rabbit muscle indicate that NSC639174 and NSC110039 are the most potent inhibitors for LoTIM, whereas NSC58446 inhibits well both the parasitic and rabbit enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2025.02.004 | DOI Listing |
Nanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFRSC Med Chem
August 2025
School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
Carbapenemases, β-lactamases hydrolysing carbapenem antibiotics, challenge the treatment of multi-drug resistant bacteria. The OXA-48 carbapenemase is widely disseminated in , necessitating new treatments for producer strains. Diazabicyclooctane (DBO) inhibitors, including avibactam and nacubactam, act on a wide range of enzymes to overcome β-lactamase-mediated resistance.
View Article and Find Full Text PDFFood Chem X
August 2025
School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.
Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic.
Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.
The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.
View Article and Find Full Text PDF