98%
921
2 minutes
20
The ecological conditions of freshwater aquaculture are deteriorating by degrees in recent years. Consequently, the comprehensive utilization of saline-alkaline water has garnered increasing societal attention. Here, crucian carp (Carassius auratus) were exposed to 20, 40 mmol/L NaHCO for 30 days (T, F group). Metabolomic analyses were conducted using UPLC-QTOF/MS, complemented by biochemical and microbiology profiling to elucidate the damage of the saline environment to the intestinal microbial structure, which in turn interfered with the energy metabolism. It was observed that carbonate alkalinity (CA) exposure not only caused intestine oxidative stress but also changed the levels of several digestive enzymes, including α-amylase (AMS), chymotrypsin (CHY), lipase (LPS). Metabolomic analysis identified 22 different metabolites (DEMs) in T group and 77 DEMs in F group. MetaboAnalyst analysis indicated that these metabolites are primarily involved in energy-related pathways, including the citric acid cycle, galactose metabolism, and glycine, serine, and threonine metabolism. Intestinal microbial diversity and community composition were altered under carbonate alkalinity exposure, with increase in Proteobacteria abundance and decline in Firmicutes, abundance alongside enrichment of Sphingomonas. Herein, saline-alkaline stress disrupted the physiological homeostasis of the crucian carp intestine, leading to microbial dysbiosis and energy metabolic imbalance. This study provides a theoretical foundation for understanding the stress response of the crucian carp intestine and the role of the intestinal microbiome in host resilience under adverse environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2025.110145 | DOI Listing |
Int J Biol Macromol
September 2025
School of Public Health, Guizhou Medical University, Guiyang, China. Electronic address:
The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).
View Article and Find Full Text PDFBiology (Basel)
August 2025
Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
The lotus-fish co-culture (LFC) system leverages plant-fish symbiosis to optimize aqua-culture environments, enhancing both economic and ecological yields. However, the eco-logical mechanisms of microbial communities in LFC systems remain poorly understood, particularly regarding the functional roles of fungi, archaea, and viruses. This study compared microbiota (viruses, archaea, fungi) in water, sediment, and fish (crucian carp) gut of LFC and intensive pond culture (IPC) systems using integrated metagenomic and environmental analyses.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Hainan Institute of Northwest A&F University, Sanya, 572024, Hainan Province, China.
Grass carp reovirus type II (GCRV-II) has inflicted substantial economic damage to aquaculture industry due to highly contagious. To combat epidemic GCRV-II, we rational designed and constructed a multi-epitope nanoparticle vaccine (Pep-Fn) that consisted with cell penetrating peptide (CPP), epitope peptides, cell and grass carp-derived ferritin. Firstly, an anti-GCRV-II phage antibody library was constructed to screen antibodies for outer capsid proteins VP4 and VP35.
View Article and Find Full Text PDFEur J Neurosci
September 2025
Department of Mechatronics Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
Motor adaptation is crucial for animals to move in diverse environments, including fish. Here, we develop a novel experimental platform that allows for precise control of sensorimotor transformations and direct comparison with established paradigms used in mammalian studies. We show that goldfish operating a fish operated vehicle (FOV) adapt swimming behavior to achieve targets when vehicle movement is perturbed by a rotational transformation.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
This study evaluated the effects of ginger extract, applied via four methods-direct addition, microencapsulation, and combinations with NaCl or eugenol-on stress responses and muscle quality in crucian carp during transportation. Among the treatments, microcapsules and the eugenol compound showed the best results, each achieving a 50% survival rate after 72 h. The microcapsule group provided prolonged antioxidant protection, stabilized water quality, reduced cortisol levels, suppressed pro-apoptotic gene expression (, , , , , and ), while upregulating the anti-apoptotic gene .
View Article and Find Full Text PDF