98%
921
2 minutes
20
Terahertz (THz) waves, positioned between microwave and infrared in the electromagnetic spectrum, have promising applications in medical imaging and biomedicine. In this study, terahertz irradiation at 2.52 THz (100 mW/cm2) did not alter the proliferation of human umbilical vein endothelial cells (HUVECs), but significantly enhanced their angiogenic capacity. This enhancement was accompanied by increased levels of angiogenesis-related proteins such as VEGF in the culture supernatant. ATAC sequencing and RNA sequencing revealed a significant increase in the expression of cytoskeleton-associated genes, including PDXP and SH3BP1, post-irradiation. Additionally, intracellular calcium concentration, closely linked to angiogenesis, markedly increased following terahertz exposure. However, diltiazem significantly mitigated the enhanced angiogenic capacity induced by terahertz irradiation. In conclusion, terahertz irradiation promotes angiogenesis in HUVECs, partly by activating the VEGF signaling pathway through increased calcium fluxes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844849 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317426 | PLOS |
Bull Exp Biol Med
August 2025
Novosibirsk State University, Novosibirsk, Russia.
The morphofunctional characteristics of rabbit corneas were studied after terahertz (THz) irradiation at a frequency of 2.3 THz with varying durations (15 or 30 min) or intensities (0.012 mW/cm (38°C), 0.
View Article and Find Full Text PDFSmall
August 2025
College of Physics, Qingdao University, Qingdao, 266071, China.
Single-component multimodal luminescent materials, particularly those exhibiting dynamic fluorescence properties, have garnered significant attention in the field of high-end information encryption. However, achieving single-component multimodal luminescence, including dynamic fluorescence, in halide perovskites remains a challenge. In this study, a Pb/Mn co-doping strategy is proposed to achieve multiple optical responses in CsCdCl perovskites, including crystal coloration, dynamic fluorescence switching, thermochromism, and long afterglow.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
August 2025
School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
Bone defects present a significant clinical challenge, often requiring surgical intervention due to delayed healing. Terahertz (THz) radiation, a noninvasive physical energy-based therapy, has shown potential in promoting bone regeneration through biomolecular interactions. This study aims to evaluate the therapeutic efficacy of THz irradiation in enhancing bone repair using a pre-clinical rat tibial fracture defect model.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2026
School of Science, China University of Geosciences, Beijing 100083, China.
As a common sulfate mineral on Martian surface, calcium sulfate hydrate experiences wide temperature variations. However, the permittivity properties of calcium sulfate hydrate as a function of temperature remains underexplored. In this study, this gap has been addressed by systematically investigating the complex permittivity of calcium sulfate dihydrate (CaSO·2HO) in THz frequency band using terahertz time-domain spectroscopy over a temperature range from 100 K to 320 K.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Molecular isomerization supports a variety of biological processes, and conformational regulation is a promising approach to achieve the desired physiological functions or inhibit adverse biological activities. Although extremely challenging, a controllable isomerism-modulated approach with features such as being molecule specific, non-invasive, and reversible is highly desirable for complex biosystems. Herein, based on the evidence from the molecular dynamic simulations of the controlled rotation around the σ bonds in retinal moiety and its generalizability to other systems, we present a strategy to achieve frequency-specific terahertz (THz) light-driven, controllable and reversible molecular isomerization.
View Article and Find Full Text PDF