Assessment of in vitro assays and quantitative determination of selectivity and modality of inhibitors targeting the cell cycle regulating, oncogenic cyclin-dependent kinases.

Arch Biochem Biophys

Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China. Electronic address: shiz

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At the heart of cancer pathology lies the dysregulated cell cycle, which is often driven by aberrant activities of the cell cycle regulating, cyclin-dependent kinases (CDKs). Efforts to harness the therapeutic potential of modulating CDK activities have led to the development of inhibitors with tailored CDK selectivity. However, uniformity in the methods used to evaluate CDK inhibitor selectivity has been lacking and consequently, direct comparison and interpretation of selectivity profiles determined under different assay conditions is difficult. Determination of the inhibition modalities crucial to profiling selectivity of a CDK inhibitor requires thorough kinetic analysis carried out under comparable assay conditions. In this study, we employed a streamlined series of in vitro assays for profiling CDK inhibitors wherein intrinsic inhibition constants and cellular binding parameters were measured by using strategically designed enzymatic inhibition and complementary biophysical assays. Our findings demonstrate the effectiveness of this strategy in determining and quantitatively analyzing the selectivity and inhibition modality of a set of representative CDK inhibitors towards the major oncogenic, cell cycle CDKs. In addition, the assay results provide insights into the inhibitor-target interactions that extend beyond potency and selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2025.110349DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
vitro assays
8
cycle regulating
8
cyclin-dependent kinases
8
cdk inhibitor
8
assay conditions
8
cdk inhibitors
8
selectivity
7
cdk
6
assessment vitro
4

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.

View Article and Find Full Text PDF

Mi-Lnc70 Regulates the Progression of Murine Pancreatic β-Cell Line and Affects the Synthesis of Insulin and Glucagon.

Onco Targets Ther

September 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.

Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.

Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.

View Article and Find Full Text PDF