Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Central and peripheral extensive-stage small-cell lung cancer (ES-SCLC) are reported to be two distinct tumor entities, but their responses to the front-line therapies and underlying biological mechanisms remain elusive. In this study, we first compared the outcomes of central and peripheral ES-SCLC receiving front-line chemotherapy or chemo-immunotherapy with a cohort of 265 patients. Then we performed single-cell RNA sequencing (scRNA-seq) on nine treatment-naïve ES-SCLC samples to investigate potential mechanisms underlying the response differences. Under chemotherapy, the peripheral type had a lower objective response rate (44.8% vs. 71.2%, = 0.008) and shorter progression-free survival (median 3.4 vs. 5.1 months, = 0.001) than the central type. When comparing chemo-immunotherapy with chemotherapy, the peripheral type showed a greater potential to reduce progression (HR, 0.18 and 0.52, respectively) and death (HR, 0.44 and 0.91 respectively) risks than the central type. Concerning the scRNA-seq data, the peripheral type was associated with chemo-resistant and immune-responsive tumoral and microenvironmental features, including a higher expression level of MYC-Notch-non-neuroendocrine (MYC-Notch-non-NE) axis and a more potent antigen presentation and immune activation status. Our results revealed that central and peripheral ES-SCLC had distinct responses to front-line treatments, potentially due to differential activation statuses of the MYC-Notch-non-NE axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836348PMC
http://dx.doi.org/10.1002/mco2.70112DOI Listing

Publication Analysis

Top Keywords

central peripheral
16
responses front-line
12
peripheral type
12
peripheral extensive-stage
8
extensive-stage small-cell
8
small-cell lung
8
lung cancer
8
peripheral es-sclc
8
chemotherapy peripheral
8
central type
8

Similar Publications

Mechanisms and treatment of cancer therapy-induced peripheral and central neurotoxicity.

Nat Rev Cancer

September 2025

Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.

Neurotoxicity is a common and potentially severe adverse effect from conventional and novel cancer therapy. The mechanisms that underlie clinical symptoms of central and peripheral nervous system injury remain incompletely understood. For conventional cytotoxic chemotherapy or radiotherapy, direct toxicities to brain structures and neurovascular damage may result in myelin degradation and impaired neurogenesis, which eventually translates into delayed neurodegeneration accompanied by cognitive symptoms.

View Article and Find Full Text PDF

Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

Neuromuscular diseases are often accompanied by various types of sleep-related breathing disorders, which can exacerbate the underlying condition and are associated with a poor prognosis. Early identification is essential, and interventions such as non-invasive ventilation, oxygen therapy, and respiratory rehabilitation should be initiated promptly to mitigate disease progression and improve outcomes. Nevertheless, the rates of missed and misdiagnosed cases remain common in clinical practice.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF