Prediction on a Missing Ferroelectric Butterfly Phosphorus Allotrope and Its Energy-Favorable Low-Dimensional Forms.

J Phys Chem Lett

National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elemental phosphorus exhibits a remarkable diversity of allotropes, including black, white, and violet phosphorus, each with unique structural and electronic properties. Recently, phosphorus has experienced a renaissance in scientific interest for its potential applications across various fields. Among these, the red phosphorus (RP) possesses a considerable variety of stacking configurations. By analyzing the preference for the P building block in Type II, Type IV, and Type V RP allotropes, we proposed a novel butterfly connected structural scheme. This new structure's stability was well confirmed by calculations. It is characterized as a semiconductor with a band gap of 1.4 eV, exhibiting a red appearance. Additionally, this structure demonstrates ferroelectric behavior, making it an instance of single-element ferroelectric materials. Furthermore, our investigation of chain-type phosphorus structures within carbon nanotubes (CNTs) revealed that the butterfly type connection scheme represents the lowest energy configuration within specifically sized CNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5c00257DOI Listing

Publication Analysis

Top Keywords

type type
8
phosphorus
6
prediction missing
4
missing ferroelectric
4
ferroelectric butterfly
4
butterfly phosphorus
4
phosphorus allotrope
4
allotrope energy-favorable
4
energy-favorable low-dimensional
4
low-dimensional forms
4

Similar Publications

Rationale: Physicians sometimes encounter various types of gut feelings (GFs) during clinical diagnosis. The type of GF addressed in this paper refers to the intuitive sense that the generated hypothesis might be incorrect. An appropriate diagnosis cannot be obtained unless these GFs are articulated and inventive solutions are devised.

View Article and Find Full Text PDF

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF

Objectives: The aim of this study was to explore contributing factors identified in serious incident investigations conducted by internal, independent multidisciplinary teams.

Methods: A total of 166 serious incident investigation reports, conducted between 2018 and 2023 in 11 integrated social and health care organizations in Finland, were analyzed. The reports were classified by incident type and contributing factor, which were analyzed using the WHO's Conceptual Framework for the International Classification for Patient Safety.

View Article and Find Full Text PDF

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF