98%
921
2 minutes
20
Mucosal vaccines can generate localized mucosal immunity, effectively preventing initial pathogen infection and providing more effective protection. Oral vaccines are an attractive option for inducing mucosal immunity. The yeast cell wall, primarily composed of natural β-1,3-d glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. In this study, by using vortexing methods to break yeast cell walls into nanometer-sized fragments, which retain the negatively charged β-glucan components on their surface and employing electrostatic adsorption/coextrusion techniques, these fragments were attached onto the surface of PS-DNA NPs, as verified by a scanning electron microscope (SEM), a transmission electron microscope (TEM), and dynamic light scattering (DLS) data. YCW-coated NPs (YNPs) showed greater drug stability compared to NPs in a simulated gastrointestinal environment. In vitro cell evaluation further demonstrated that YNPs were rapidly and efficiently taken up by antigen-presenting cells via receptor dectin-1-mediated endocytosis. In vivo experiments revealed that the oral vaccine elicited high levels of RBD-specific antibodies and triggered extensive cellular immunity in the intestinal mucosa. This study provides new insights into mucosal vaccine research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00943 | DOI Listing |
J Vet Med Sci
September 2025
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Nippon Veterinary and Life Science University.
This study investigated the effects of soy isoflavone yeast fermented extract (soyF) and soy isoflavone yeast unfermented extract (soyN) on rat ileal smooth muscle contraction. SoyF and soyN inhibited carbachol (CCh)- or KCl-induced contraction in a concentration-dependent manner; however, these effects were stronger for CCh-induced contraction than that for KCl, and the relaxation effect was stronger for soyF than for soyN. SoyF-induced relaxation was attenuated by 4-aminopyridine (4-AP), a Kv channel inhibitor, and iberiotoxin (IbTX), a calcium-activated potassium channel (BK channel) inhibitor.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China; Nationa
Entomopathogenic fungi such as Metarhizium acridum are pivotal for sustainable pest management, yet the industrial conidial production is hindered by low yields and environmental sensitivity. Transcriptional regulation provides key targets for engineering strain modification. AP-1 transcription factors (TFs) are well-known for their roles in fungal growth, development, conidiation, pathogenicity and stress tolerance across various fungi.
View Article and Find Full Text PDFFungal Biol
October 2025
Department of Pathogen Biology, School of Medicine, Nantong University, 226007, Nantong, Jiangsu, China. Electronic address:
Candida albicans employs apoptosis to maintain genomic stability under genotoxic stress, yet its regulatory mechanisms remain poorly defined. Here, we characterize the role of a putative pro-apoptotic factor Moh1 in C. albicans.
View Article and Find Full Text PDFMicrob Pathog
September 2025
School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang, 110036, China. Electronic address:
Mycoplasma gallisepticum (MG) is one of the main pathogens causing chronic respiratory diseases in chickens, which seriously affects the sustainable and healthy development of the poultry industry and leading to heavy economic losses. Therefore, we developed a safe, efficient, convenient, and low-cost MG oral vaccine. The vaccine is based on a recombinant yeast surface display system to compensate for the shortcomings of existing vaccines.
View Article and Find Full Text PDF