98%
921
2 minutes
20
Medicinal plants and their phytochemicals have been extensively employed worldwide for centuries to address a diverse range of ailments, boasting a history that spans several decades. These plants are considered the source of numerous medicinal compounds. For instance, silymarin is a polyphenolic flavonoid extract obtained from the milk thistle plant or Silybum marianum which has been shown to have significant neuroprotective effects and great therapeutic benefits. Neurodegenerative diseases (NDs) are a class of neurological diseases that have become more prevalent in recent years, and although treatment is available, there is no complete cure developed yet. Silymarin utilizes a range of molecular mechanisms, including modulation of MAPK, AMPK, NF-κB, mTOR, and PI3K/Akt pathways, along with various receptors, enzymes, and growth factors. These mechanisms collectively contribute to its protective effects against NDs such as Alzheimer's disease, Parkinson's disease, and depression. Despite its safety and efficacy, silymarin faces challenges related to bioavailability and aqueous solubility, hindering its development as a clinical drug. This review highlights the molecular mechanisms underlying silymarin's neuroprotective effects, suggesting its potential as a promising therapeutic strategy for NDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-024-04654-y | DOI Listing |
Neuro Endocrinol Lett
September 2025
Department of Biomedical and Life Sciences, Lancaster University, UK.
Alzheimer's Disease (AD) is the leading cause of dementia worldwide, with significant cognitive and behavioural impairments that devastate individuals and their families. Cohort-level findings, demonstrate the broader population-level implications of Sleep and Circadian Rhythm Disruption (SCRD) in AD and underscore the need for early interventions, emphasizing the importance of timely action. However, the mechanism remains unclear.
View Article and Find Full Text PDFAnnu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria.
Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).
View Article and Find Full Text PDFGerontologist
September 2025
Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612United States.
Background And Objectives: Cognition may be influenced by health-related factors such as blood pressure (BP). However, variations in BP may differentially affect cognition across race. This study investigates BP and cognitive decline in older Black and White adults.
View Article and Find Full Text PDFGerontologist
September 2025
Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, South Korea.
Background And Objectives: Volunteering has cognitive benefits in later life and has been theorized to protect against Alzheimer's disease and related dementias (ADRD). A small but growing body of volunteer programs target people with mild cognitive impairment (MCI)-who are presumably at elevated risk for ADRD, but we know surprisingly little about who volunteers with MCI and how volunteering affects their subsequent cognitive changes. The current study sought to address these gaps.
View Article and Find Full Text PDF