98%
921
2 minutes
20
Designing an electrocatalyst that simultaneously satisfies high catalytic activity and surface stability is essential for realizing high-performance lithium-sulfur (Li||S) batteries. Here, we propose an advanced electrocatalyst by constructing a thin protective catalytic layer (PCL) on the surface of metal nanoparticle catalysts. This few atomic layer thicknesses of the PCL composed of pyridinic N embedded graphitic carbon allows electrons to transfer from a metal nanoparticle to pyridinic N, resulting in an optimized p-orbital level of pyridinic N of PCL favorable for highly active conversion reaction of lithium sulfide. Further, PCL suppresses the direct contact of sulfur species with metal electrocatalysts. This surface protection effect inhibits the phase change of metal electrocatalysts to metal sulfide impurities, which maintains a highly active Li||S electrocatalysis for long-term cycling. Consequently, A h-level Li||S pouch cell with >500 W h kg (specific energy based on current collector, anode, separator, electrolyte, and cathode), Coulombic efficiency (>95%), and stable life of 20 cycles was successfully realized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828906 | PMC |
http://dx.doi.org/10.1038/s41467-025-56606-2 | DOI Listing |
Adv Mater
September 2025
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutics, Qingdao
Hyaluronic acid (HA), a linear glycosaminoglycan, serves as a key structural constituent of extracellular matrices, participating in diverse biological processes across both normal physiological and pathological contexts. While the gut microbiota exerts a pivotal influence on HA utilization within the human body, current scientific literature indicates a limited understanding of the molecular mechanisms underlying this interaction. In this study, a gut bacterium Enterococcus faecalis F1221 has been isolated, which demonstrated the ability to degrade HA.
View Article and Find Full Text PDFSmall
September 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Iron-carbon materials have emerged as promising heterogeneous Fenton-like catalysts for the removal of emerging organic contaminants. However, their practical applications are substantially hindered by complex preparation procedures and irreversible deactivation of iron centers. Herein, a novel double-layer core-shell catalyst Fe@FeC@Graphite (Fe-CTS-3000) is one-step synthesized by a high-temperature carbothermal shock (CTS) strategy.
View Article and Find Full Text PDFBiochimie
September 2025
Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, F-33140 France. Electronic address:
Marine microalgae are the primary producers of important lipids in oceanic ecosystems. In particular, they sustain the food web with omega-3 very-long-chain polyunsaturated fatty acids (n-3 PUFAs), which play a protective role against various human metabolic disorders and are thus considered highly beneficial to health. Ostreococcus tauri is a marine pico-eukaryote that contains high levels of several n-3 PUFAs, including docosahexaenoic acid (22:6n3; DHA), octadecapentaenoic acid (18:5n3, OPA), and hexadecatetraenoic acid (16:4n3), each with a distinct distribution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
Recent COVID-19 pandemic has raised an urgent need for effective strategies to combat viruses that can pose serious health threats to the entire human race. Incorporating antipathogenic functions into everyday objects and personal protective equipment has become increasingly important, motivating the development of general-purpose antiviral materials. Single-atom catalysts, known for superior catalytic performance and maximized atomic utilization, have been explored in various research fields, including artificial nanozymes for bioapplications.
View Article and Find Full Text PDF