98%
921
2 minutes
20
Overuse of herbicides poses a serious threat to ecosystems and human health; thus, the accurate determination of herbicide residue is very meaningful. Thanks to the advantage of no background fluorescence interference, the upconversion luminescence allows for reliable analysis of target molecules in complicated samples. Here, through screening of 20 natural amino acids, it is discovered that the photooxidation of methionine exhibited the fastest recovery rate of triplet-triplet annihilation upconversion (TTA-UC) luminescence via oxygen consumption, which is 400-fold faster compared to the well-known photooxidation of oleic acid. Furthermore, oxygen-resistant, small-size, red-to-blue TTA-UC nanoparticles with a record upconversion efficiency (7.2%, normalized to 100%) are prepared using hydrophobic butyl methionine as an oxygen scavenger. Surface negatively charged TTA-UC nanoparticles are able to selectively enrich positively charged paraquat on their surface. Accordingly, a photoinduced electron transfer process occurred between the triplet excited state of the photosensitizer and the electron-deficient paraquat, quenching the upconversion luminescence. Relying on this principle, TTA-UC-based paraquat sensing is achieved with a fast response (less than 1 s), high selectivity, and a low limit of detection (1.54 µg mL). Further, the TTA-UC nanoparticles are utilized to implement paraquat analysis in lake water without sample pretreatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401945 | DOI Listing |
Light Sci Appl
September 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.
Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy
Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology Changchun, 130022, Jilin, People's Republic of China.
The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:
Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).
View Article and Find Full Text PDFLuminescence
September 2025
Department of Computational and Applied Mechanics, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
Rare-earth ions (REIs), especially trivalent lanthanides (Ln ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML).
View Article and Find Full Text PDF