Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The boreal forests of central and eastern Siberia, dominated by larches, are challenged by increasingly harsher continental conditions and more frequent droughts. Despite the crucial ecosystem services provided by these Siberian boreal forests, the major stressors driving the selective factors as well as the genetic adaptation mechanisms of larches are still unknown. Here we present a landscape genomics study on 243 individuals of the dominant larch tree species, and . We assessed genotype-environment associations (GEAs) between genetic variation of individual markers based on genotyping-by-sequencing (GBS) data and bioclimatic variables recorded at the sampling locations. We find that the cold and dry winter conditions of eastern Siberia are likely the main selective factor driving the genetic adaptation of larches. Gene ontology (GO) enrichment analysis identified metabolic, transmembrane transport, and homeostatic, as well as developmental processes among the main biological processes underlying genetic adaptation driven by cold and dry winter conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821550PMC
http://dx.doi.org/10.1002/ece3.70940DOI Listing

Publication Analysis

Top Keywords

genetic adaptation
16
cold dry
12
dry winter
12
winter conditions
12
eastern siberia
12
biological processes
8
processes underlying
8
underlying genetic
8
adaptation larches
8
conditions eastern
8

Similar Publications

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Catalyzing computational biology research at an academic institute through an interest network.

PLoS Comput Biol

September 2025

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America.

Biology has been transformed by the rapid development of computing and the concurrent rise of data-rich approaches such as, omics or high-resolution imaging. However, there is a persistent computational skills gap in the biomedical research workforce. Inherent limitations of classroom teaching and institutional core support highlight the need for accessible ways for researchers to explore developments in computational biology.

View Article and Find Full Text PDF

Motivation: A genome-wide variant effect calibration method was recently developed under the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following ClinGen recommendations for variant classification. While genome-wide approaches offer clinical utility, emerging evidence highlights the need for gene- and context-specific calibration to improve accuracy. Building on previous work, we have developed an algorithm tailored to converting functional scores from both multiplexed assays of variant effects (MAVEs) and computational variant effect predictors (VEPs) into ACMG/AMP evidence strengths.

View Article and Find Full Text PDF

Binding of autotransporter adhesin CbpF to human CEACAM1 and CEACAM5: A Velcro model for bacterium adhesion.

Proc Natl Acad Sci U S A

September 2025

Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

In eukaryotic systems, three major types of cell junctions have been well characterized. While bacterial adhesion mechanisms also exhibit remarkable diversity, the molecular processes that regulate the dynamic modulation of binding strength between elongated bacterial cells and host cells remain poorly understood. () utilizes the surface adhesin CbpF to interact with the highly expressed host receptors CEACAM1 and CEACAM5 on cancer cells to facilitate tumor colonization.

View Article and Find Full Text PDF