Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Decision-making in emergency settings is inherently complex, requiring surgeons to rapidly evaluate various clinical, diagnostic, and environmental factors. The primary objective is to assess a patient's risk for adverse outcomes while balancing diagnoses, management strategies, and available resources. Recently, indocyanine green (ICG) fluorescence imaging has emerged as a valuable tool to enhance surgical vision, demonstrating proven benefits in elective surgeries.

Aim: This consensus paper provides evidence-based and expert opinion-based recommendations for the standardized use of ICG fluorescence imaging in emergency settings.

Methods: Using the PICO framework, the consensus coordinator identified key research areas, topics, and questions regarding the implementation of ICG fluorescence-guided surgery in emergencies. A systematic literature review was conducted, and evidence was evaluated using the GRADE criteria. A panel of expert surgeons reviewed and refined statements and recommendations through a Delphi consensus process, culminating in final approval.

Results: ICG fluorescence imaging, including angiography and cholangiography, improves intraoperative decision-making in emergency surgeries, potentially reducing procedure duration, complications, and hospital stays. Optimal use requires careful consideration of dosage and timing due to limited tissue penetration (5-10 mm) and variable performance in patients with significant inflammation, scarring, or obesity. ICG is contraindicated in patients with known allergies to iodine or iodine-based contrast agents. Successful implementation depends on appropriate training, availability of equipment, and careful patient selection.

Conclusions: Advanced technologies and intraoperative navigation techniques, such as ICG fluorescence-guided surgery, should be prioritized in emergency surgery to improve outcomes. This technology exemplifies precision surgery by enhancing minimally invasive approaches and providing superior real-time evaluation of bowel viability and biliary structures-areas traditionally reliant on the surgeon's visual assessment. Its adoption in emergency settings requires proper training, equipment availability, and standardized protocols. Further research is needed to evaluate cost-effectiveness and expand its applications in urgent surgical procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823064PMC
http://dx.doi.org/10.1186/s13017-025-00575-wDOI Listing

Publication Analysis

Top Keywords

fluorescence-guided surgery
12
icg fluorescence
12
fluorescence imaging
12
indocyanine green
8
decision-making emergency
8
emergency settings
8
icg fluorescence-guided
8
emergency
6
icg
6
surgery
5

Similar Publications

Background: The liver cone unit (Tokyo 2020 terminology) of the peripheral portal vein territory represents the smallest anatomical and functional unit of the liver. While this unit enables anatomical, subsegmental resection, particularly in patients with cirrhosis, the tumor-bearing cone unit can be challenging to identify intraoperatively. PATIENTS AND METHODS: A 58-year-old man with hepatitis C-related cirrhosis (Child-Pugh B) was diagnosed with a subcapsular hepatocellular carcinoma (HCC) in segment 8.

View Article and Find Full Text PDF

Fluorescence-guided tumor resection with a cathepsin B-activatable, EGFR-targeted probe and a dual-mode surgical exoscope.

Eur J Med Chem

August 2025

Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

Fluorescence-guided surgery enhances surgical precision by enabling real-time tumor visualization. Here, we developed a cathepsin B-activatable imaging probe conjugated to the EGFR-targeting antibody cetuximab (Cetux-CB probe) for fluorescence-guided resection of triple-negative breast cancer (TNBC). The probe consists of a cathepsin B-sensitive peptide linker, a near-infrared fluorophore (Flamma™ Fluors 749), and a quencher (qFlamma Black01), enabling enzymatic activation following tumor-specific accumulation.

View Article and Find Full Text PDF

Brain tumors are one of the most dangerous cancers with serious effects on human health. The primary treatment approach involves a combination of surgery, supplemented by postoperative radiotherapy. The growth pattern of malignant tumor is typically infiltrative, posing a challenge in visually distinguishing the tumor from the surrounding normal brain tissue during surgery.

View Article and Find Full Text PDF

Image-guided surgery plays a critical role in improving the cancer patient prognosis. However, current clinical probes are often single-modal with "always-on" signals, failing to provide complementary and precise guidance across all perioperative phases. To tackle this hurdle, we develop a biomarker-activatable, multimodal nanoprobe - - based on redox-mediated manganese valence switching for tumor-specific, perioperative image-guided surgery.

View Article and Find Full Text PDF

Introduction: Fluorescence-guided surgery employs a near-infrared emitting dye or light source to enhance intraoperative visualization. This study reports the first-in-human application of the Endolumik fluorescence-guided calibration tube (EGCT) during laparoscopic sleeve gastrectomy (SG) and gastric bypass (GB).

Methods: Under IRB approval (NCT05486325), two surgeons performed 21 laparoscopic SG and 10 GB procedures using EGCT.

View Article and Find Full Text PDF