Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and, ultimately, RGC death. This confirms the requirement of POU4F factors for RGC development and survival, with a crucial role in regulating RGC axon outgrowth and pathfinding. Here, we have investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long-range axon projections. We show that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs that are normally generated during early development and extend axonal projections up to the brain. In conclusion, these results show that POU4F2 alone is sufficient to promote the crucial properties of projection neurons that arise from retinal progenitors outside their developmental window.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.204297DOI Listing

Publication Analysis

Top Keywords

projection neurons
12
pou4f2 overexpression
8
genesis retinal
8
retinal ganglion
8
pou4f factors
8
rgc
6
retinal
5
pou4f2
4
overexpression promotes
4
promotes genesis
4

Similar Publications

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF

Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.

Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).

View Article and Find Full Text PDF

Anatomical pathways and functional implications of the rodent auditory system-basal ganglia interconnectivity.

Front Behav Neurosci

August 2025

Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.

View Article and Find Full Text PDF

The dorsal column nuclei encode and transmit the network signatures of mechanical allodynia.

Cell Rep

September 2025

Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

The neural circuits that transmit the sense of pain and how pain is encoded by these circuits are still poorly understood.Mechanical allodynia is a prominent form of chronic pain characterized by painful responses to innocuous touch that develops as a consequence of nerve damage and inflammation. Here, we show that alterations to the normal log-normal distribution of neuronal activity and structure of neural correlations between neurons in the dorsal column nuclei (DCN) constitute a signature feature of mechanical allodynia, with the transmission of "allodynic" light touch information to the thalamus by somatostatin-positive projection neurons in the DCN being essential for its expression and development.

View Article and Find Full Text PDF