98%
921
2 minutes
20
Bismuth-based materials that adhere to the alloy/dealloy reaction mechanism are regarded as highly promising anode materials for potassium-ion batteries due to their high volume-specific capacity and moderate reaction potentials. However, their commercial viability has been limited by the effects of structural collapse due to volume distortion and impeded electron conduction, resulting in rapid capacity decline. In this work, a carbon-coated nanosized BiPO rod (BiPO@C) was designed and fabricated to overcome the aforementioned challenges through the architecture engineering and anionic-tuning strategy. In particular, the nanosized nanorods significantly reduce the volume expansion; the incorporation of the bulk and open-skeleton anion PO serves to mitigate the considerable volume distortion and generates the high ionic conductivity product (KPO) to ameliorate the poor ionic transport due to the structural deformation. The elaborated BiPO rods exhibit high specific capacity (310.3 mAh g, at 500 mA g), excellent cycling stability (over 700 cycles at 500 mA g) and superior rate performance (137.8 mAh g, at 1000 mA g). Systematic ex-situ XRD and TEM, as well as kinetic tests, have revealed the "conversion-multistep alloying" reaction process and the "battery-capacitance dual-mode" potassium storage mechanism. Moreover, the thick electrodes showed excellent specific capacity and rate performance, demonstrating their significant application potential in the next generation of SIBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820522 | PMC |
http://dx.doi.org/10.3390/molecules30030729 | DOI Listing |
Angiogenesis
September 2025
Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong China.
Coarse-grained (CG) lipid models enable efficient simulations of large-scale membrane events. However, achieving both speed and atomic-level accuracy remains challenging. Graph neural networks (GNNs) trained on all-atom (AA) simulations can serve as CG force fields, which have demonstrated success in CG simulations of proteins.
View Article and Find Full Text PDF