98%
921
2 minutes
20
N-polar GaN HEMTs feature a natural back-barrier and enable the formation of low-resistance Ohmic contacts, with the potential to suppress short-channel effects and current collapse effects at sub-100 nm gate lengths, rendering them particularly promising for high-frequency communication applications. In this study, N-polar GaN films were grown on C-face SiC substrates with a 4° misorientation angle via MOCVD. By employing a two-step growth process involving LT-GaN or LT-AlGaN, the surface roughness of N-polar GaN films was reduced to varying degrees, accompanied by an improvement in crystalline quality. The growth processes, including surface morphology at each growth stage, such as the AlN nucleation layer, LT-GaN, LT-AlGaN, and the initial 90 nm HT-GaN, were investigated. The results revealed that a high V/III ratio and low-temperature growth conditions for the low-temperature layers, along with the introduction of a minor amount of Al, influenced adatom migration behavior and facilitated the suppression of step bunching. Suppressing step bunching during the initial growth stages was demonstrated to be critical for improving the surface quality and crystalline quality of N-polar GaN films. An N-polar GaN HEMT epitaxial structure was successfully achieved using the optimized surface morphology with a dedicated Fe-doped buffer process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818682 | PMC |
http://dx.doi.org/10.3390/ma18030638 | DOI Listing |
Front Optoelectron
March 2025
Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
In this paper, we have studied the electrical excitation of plasma-wave in N-polar AlGaN/GaN high electron mobility transistors (HEMT) under asymmetric boundaries leads to terahertz emission. Numerical calculations are conducted through the simultaneous solution of Maxwell's equations and the self-consistent hydrodynamic model. By employing this method, we solved the plasma-wave model in the channel of an N-polar AlGaN/GaN HEMT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Electrical & Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
An up to 40% relaxed N-polar InGaN pseudosubstrate was obtained by a multistep in situ porosification technique on the N-polar GaN template using the metal-organic chemical vapor deposition (MOCVD) method. An InGaN/InGaN/GaN superlattice (SL) layer (SL) with a higher composition of InGaN ( = 15.2%) compared to InGaN ( = 8.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Next Generation Semiconductor Materials, Southeast University, Suzhou 215123, China.
N-polar GaN HEMTs feature a natural back-barrier and enable the formation of low-resistance Ohmic contacts, with the potential to suppress short-channel effects and current collapse effects at sub-100 nm gate lengths, rendering them particularly promising for high-frequency communication applications. In this study, N-polar GaN films were grown on C-face SiC substrates with a 4° misorientation angle via MOCVD. By employing a two-step growth process involving LT-GaN or LT-AlGaN, the surface roughness of N-polar GaN films was reduced to varying degrees, accompanied by an improvement in crystalline quality.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China.
Micromachines (Basel)
September 2024
Institute of Electronics, Microelectronics and Nanotechnology, CNRS-IEMN, 59650 Lille, France.
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing lithography after locally removing the substrate and buffer layers in order to access the n+-doped backside layer. As deposited non-alloyed metal stack on top of N-polar orientation GaN layer after buffer layers removal results in poor ohmic contact quality.
View Article and Find Full Text PDF