98%
921
2 minutes
20
Introduction: Synthetic biology revolutionizes our ability to decode and recode genetic systems. The capability to reconstruct and flexibly manipulate multi-gene systems is critical for understanding cellular behaviors and has significant applications in therapeutics.
Objectives: This study aims to construct a diverse library of synthetic tunable promoters (STPs) to enable flexible control of multi-gene expression in mammalian cells.
Methods: We designed and constructed synthetic tunable promoters (STPs) that incorporate both a universal activation site (UAS) and a specific activation site (SAS), enabling multi-level expression control via the CRISPR activation (CRISPRa) system. To evaluate promoter activity, we utilized Massively Parallel Reporter Assays (MPRA) to assess the basal strengths of the STPs and their activation responses. Next, we constructed a three-gene reporter system to assess the capacity of the synthetic promoters for achieving multilevel control of single-gene expression within multi-gene systems.
Results: The promoter library contains 24,960 unique non-redundant promoters with distinct sequence characteristics. MPRA revealed a wide range of promoter activities, showing different basal strengths and distinct activation levels when activated by the CRISPRa system. When regulated by targeting the SAS, the STPs exhibited orthogonality, allowing multilevel control of single-gene expression within multi-gene systems without cross-interference. Furthermore, the combinatorial activation of STPs in a multi-gene system enlarged the scope of expression levels achievable, providing fine-tuned control over gene expression.
Conclusion: We provide a diverse collection of synthetic tunable promoters, offering a valuable toolkit for the construction and manipulation of multi-gene systems in mammalian cells, with applications in gene therapy and biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2025.02.008 | DOI Listing |
J Mater Chem B
September 2025
Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Perylene diimide (PDI) radical anions have attracted increasing attention as hypoxia-responsive photothermal agents due to their strong near-infrared (NIR) absorption and efficient photothermal conversion. However, their biomedical application is often limited by aggregation-induced quenching and poor structural tunability. In this work, we report a rationally engineered four-arm PDI derivative (PDI-4Alky·4Cl) bearing terminal alkyne groups, which not only suppresses π-π stacking steric and electrostatic repulsion, but also serves as a versatile molecular scaffold for further functionalization.
View Article and Find Full Text PDFChemphyschem
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2025
Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.
View Article and Find Full Text PDF