Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, a visual electrochemiluminescence (ECL) luminophore, 6-azido-2-thioxanthine-coated gold nanoclusters (ATT-Au NCs), was prepared efficiently in a single step, followed by comprehensive characterization of their structural, optical, and ECL properties using diverse analytical methodologies. Concurrently, gold nanoparticles, gold dimers, gold nanorod (Au NR) dispersions, and gold nanorod dimers (parallel and perpendicular conformations) were synthesized via chemical reduction, DNA ligation, seed growth, and electrostatic adsorption of organic ligands, respectively. The finite difference time domain (FDTD) modeling was subsequently employed to analyze the electromagnetic field distribution surrounding these gold nanoparticles, revealing that parallel gold nanorod dimers notably enhanced the electromagnetic field intensity. Based on this, we constructed a novel ECL biosensor that harnessed surface-plasmon-coupled ECL (SPC-ECL) and resonance energy transfer (RET) between ATT-Au NCs and parallel Au NR dimers. The sensor incorporated CuO nanoparticles (NPs) as quenching probes to precisely induce RET, leading to the ECL signal being switched "off". This dual enhancement and quenching strategy achieved a high signal-to-noise ratio, facilitating the sensitive detection of microRNA-21 (miRNA-21) with a linear range of 1 fM-100 nM and a low detection limit of 0.28 fM. This work not only extends our understanding of the SPC effect and the application of the RET mechanism in ECL, providing a theoretical foundation for further advancements in the ECL field, but also highlights its considerable potential for applications in biomedical research and clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c18834DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
12
att-au ncs
12
gold nanorod
12
gold
8
nanorod dimers
8
electromagnetic field
8
ecl
7
electrochemiluminescence mechanisms
4
mechanisms bioanalysis
4
bioanalysis based
4

Similar Publications

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.

View Article and Find Full Text PDF

A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.

View Article and Find Full Text PDF

A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).

View Article and Find Full Text PDF