98%
921
2 minutes
20
Recent advancements in large language models (LLMs) have created new ways to support radiological diagnostics. While both open-source and proprietary LLMs can address privacy concerns through local or cloud deployment, open-source models provide advantages in continuity of access, and potentially lower costs. This study evaluated the diagnostic performance of fifteen open-source LLMs and one closed-source LLM (GPT-4o) in 1,933 cases from the Eurorad library. LLMs provided differential diagnoses based on clinical history and imaging findings. Responses were considered correct if the true diagnosis appeared in the top three suggestions. Models were further tested on 60 non-public brain MRI cases from a tertiary hospital to assess generalizability. In both datasets, GPT-4o demonstrated superior performance, closely followed by Llama-3-70B, revealing how open-source LLMs are rapidly closing the gap to proprietary models. Our findings highlight the potential of open-source LLMs as decision support tools for radiological differential diagnosis in challenging, real-world cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814077 | PMC |
http://dx.doi.org/10.1038/s41746-025-01488-3 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
JAMIA Open
October 2025
Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, United States.
Objectives: Unstructured data, such as procedure notes, contain valuable medical information that is frequently underutilized due to the labor-intensive nature of data extraction. This study aims to develop a generative artificial intelligence (GenAI) pipeline using an open-source Large Language Model (LLM) with built-in guardrails and a retry mechanism to extract data from unstructured right heart catheterization (RHC) notes while minimizing errors, including hallucinations.
Materials And Methods: A total of 220 RHC notes were randomly selected for pipeline development and 200 for validation from the Pulmonary Vascular Disease Registry.
PLOS Digit Health
September 2025
Singapore Health Services, Artificial Intelligence Office, Singapore.
Large Language Models (LLMs) show promise in augmenting digital health applications. However, development and scaling of large models face computational constraints, data security concerns and limitations of internet accessibility in some regions. We developed and tested Med-Pal, a medical domain-specific LLM-chatbot fine-tuned with a fine-grained, expert curated medication-enquiry dataset consisting of 1,100 question and answer pairs.
View Article and Find Full Text PDFStud Health Technol Inform
September 2025
MOLIT Institute, Heilbronn, Germany.
Introduction: In the context of precision oncology, patients often have complex conditions that require treatment based on specific and up-to-date knowledge of guidelines and research. This entails considerable effort when preparing such cases for molecular tumor boards (MTBs). Large language models (LLMs) could help to lower this burden if they could provide such information quickly and precisely on demand.
View Article and Find Full Text PDF