Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A growing portfolio of single-crystal optical actuators is forging a new class of photonic materials that hold prospects for quantum technologies. Ruthenium-based complexes that exhibit this phenomenon via SO-linkage photoisomerisation are of particular interest since they display multiple metastable states, once induced by green light; yet, complete photoconversion into each SO-isomeric state is rarely achieved. We discover a new complex, trans-[Ru(SO)(NH)(4-bromopyridine)]tosylate, that produces 100% photoconverted η-OSO isomeric crystal structures at 90 K, which fully transition into η-(OS)O photoisomers upon warming to 100 K, while the dark-state η-SO structure is wholly recovered by heating the crystal to room temperature. Crystal structures and optical-absorption profiles of each state are captured via in-situ light-induced single-crystal X-ray diffraction and optical-absorption spectroscopy. Results show that both photoisomeric species behave as optical switches, but with distinct optical properties. The photoisomerisation process causes thermally-reversible micro- and nanoscopic crystal strain, as characterised by optical microscopy and in-situ light-induced atomic-force microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814404PMC
http://dx.doi.org/10.1038/s41467-025-56795-wDOI Listing

Publication Analysis

Top Keywords

single-crystal optical
8
crystal strain
8
crystal structures
8
in-situ light-induced
8
optical
5
crystal
5
ternary molecular
4
molecular switching
4
switching single-crystal
4
optical actuator
4

Similar Publications

Low-Dimensional Semiconducting Silver (Germanium, Tin) Polyphosphides - Incommensurately Modulated Derivates of the HgPbP Structure Type.

Inorg Chem

September 2025

Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.

Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.

View Article and Find Full Text PDF

[HgX] Linear Group Enabled Ultraviolet Birefringent Crystal RbHgBr with Strong Optical Anisotropy and Wide Bandgap.

Adv Sci (Weinh)

September 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur

Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.

View Article and Find Full Text PDF

BaAlBO: a beryllium-free member of the SrBeBO family with a [BAlO] double-layered structure.

Chem Sci

September 2025

State Key Laboratory of Crystal Materials, Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology Tianjin 300384 China

Nonlinear optical (NLO) crystals capable of expanding the spectral region of solid-state are of great importance for many high-tech applications, yet their rational structure design remains a great challenge because of the conflicting property requirements among second harmonic generation (SHG) response, ultraviolet (UV) cut-off edge, and birefringence. Herein, based on the chemical disubstitution of the classic NLO crystal SrBeBO (SBBO), , substituting [BO] triangles with larger π-conjugated [BO] groups and substituting high-toxic [BeO] tetrahedra with environment-friendly [AlO] tetrahedra, a new high-performance aluminoborate NLO crystal, BaAlBO, has been successfully designed and synthesized. The theoretical calculations and optical property measurements indicate that BaAlBO exhibits not only the largest SHG response among the reported aluminoborates (2.

View Article and Find Full Text PDF

Magnesium Pyrophosphate Octahydrate (MgPO·8HO): Structure and Properties.

Inorg Chem

September 2025

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

We report the discovery and comprehensive characterization of the octahydrate phase of magnesium pyrophosphate, MgPO·8HO, synthesized via aqueous reactive crystallization of magnesium chloride and sodium pyrophosphate in Tris buffer at pH 8. While MgPO·3.5HO and MgPO·6HO readily form under these conditions, the octahydrate appears only rarely.

View Article and Find Full Text PDF

Pillar-like Macrocycle Reversibly Self-Assembled from a Molecular Thermally Activated Delayed Fluorescence Emitter Based on B ← N Dative Bonds with Intriguing Fluorescence.

J Am Chem Soc

September 2025

State Key Laboratory of Advanced Materials for Intelligent Sensing and Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China.

Incorporating boron atoms into organic macrocycles imparts unique chemical, electronic, and optical properties. The concept of making use of dative boron-nitrogen (B ← N) bonds for the construction of macrocycles has been proposed, but very few examples have been prepared with functional structures, much less pillar-like and other prismatic macrocycles, and their various functionalities have not been fully exploited. Here, we introduce a "functional molecular wall" synthetic protocol based on the self-assembly characteristics of B ← N dative bonds to construct highly symmetrical macrocycles, forming a quasi-pentagonal-shaped macrocycle (named [5]pyBN-) with a pillar-like structure.

View Article and Find Full Text PDF