A self-powered biosensor with cascade amplification capability facilitates ultra-sensitive detection of microRNA biomarkers.

Biosens Bioelectron

Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sensitive microRNA (miRNA) detection is crucial for cancer diagnosis. Self-powered biosensors that are used for miRNA detection show the advantages of no external power supply, mild reaction conditions, portability, etc., but still face the challenges of low efficiency of solid electrode adsorption enzyme and insufficient enzyme active site. Here, the MnS@MoS₂ composite electrode substrate boosts enzyme load, accelerates electron transfer, and enhances detection. Catalytic hairpin self-assembly (CHA) and Hybridization chain reaction (HCR) cascade bio-signal amplification enables current signal amplification via molecular recognition. When miRNA-199a is present, CHA and HCR trigger signal cascade amplification, achieving high sensitivity and specificity while powering the system. The sensor has a 0.5 fmol/L - 100 pmol/L linear response and a 0.14 fmol/L limit of detection (LOD). Additionally, the test signal is transmitted to a smartphone interface via Bluetooth, enabling portable, enabling portable, real-time detection. Our work shows this self-powered biosensor offers a new path for ultrasensitive miRNA detection, aids rapid disease biomarker monitoring, and broadens self-powered sensor use in medical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117233DOI Listing

Publication Analysis

Top Keywords

mirna detection
12
self-powered biosensor
8
cascade amplification
8
enabling portable
8
detection
7
self-powered
4
biosensor cascade
4
amplification
4
amplification capability
4
capability facilitates
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.

View Article and Find Full Text PDF

Purpose: To verify the stability and reliability of circulating microRNA (miRNA) profiles in plasma and serum under different processing and storage conditions to inform future applications to circulating biomarker analyses.

Background: The development of blood-based methods for early disease detection has become increasingly desirable across various medical fields. RNA profiles have been investigated but have been a challenge due to rapid degradation of the analyte by ubiquitous RNases.

View Article and Find Full Text PDF

Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Circular RNA (circRNA) has been confirmed to be a regulator for septic acute kidney injury (AKI). It is reported that circ_0049271 has abnormal expression in AKI patients, but its role and mechanism in septic AKI remain unclear. Lipopolysaccharide (LPS)-stimulated HK-2 cells were served as the cellular model of sepsis-associated AKI (SAKI).

View Article and Find Full Text PDF