98%
921
2 minutes
20
Light-responsive porous liquids (LPLs) attract significant attention for their controllable gas uptake under light irradiation, while their preparation has remained a great challenge. Here we report the fabrication of type II LPLs with enhanced light-responsive efficiency by tailoring the host's functionality for the first time. The functionality of light-responsive metal-organic cage (MOC-RL, constructed from dicopper and responsive ligands) is modified by introducing the second long-chain alkyl ligand, producing MOC-RL-AL as a new host. A spatially hindered solvent based on polyethylene glycol, IL-NTf, is designed and can dissolve MOC-RL-AL due to the suitable interaction, creating a type II LPL (PL-RL-AL). Under light irradiation, the variation in propylene adsorption for PL-RL-AL increases by 58.0 % compared to PL-RL. The enhanced light-responsive efficiency is caused by easier control in accessibility of internal cavities within MOCs and increased number of external cavities between MOCs and IL-NTf. This makes PL-RL-AL the first LPL with the probability for propylene/propane separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202501191 | DOI Listing |
Chem Sci
September 2025
Institut für Organische Chemie, Universitat Würzburg 97074 Würzburg Germany
The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.
View Article and Find Full Text PDFChem Sci
August 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86
The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.
View Article and Find Full Text PDFChem Sci
August 2025
Dipartimento di Scienze Chimiche, Università degli studi di Padova via Marzolo 1 35131 Padova Italy
While photoisomerization has dominated the design of photoswitchable catalysts, this work introduces an alternative approach: leveraging light-induced photodimerization to assemble catalytically active species. The adopted strategy is based on a acrylamidylpyrene derivative equipped with a TACN·Zn(ii) catalytic unit. This system undergoes a visible-light-induced [2 + 2] cycloaddition, which is both regioselective and reversible, to form a catalytically active photodimer.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDFMater Today Bio
October 2025
Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
Controlled drug delivery has attracted significant attention because of its ability to release therapeutic agents at specific times and locations. Titanium dioxide nanotubes (TNTs), which are known for their unique tubular morphology, large surface area and excellent biocompatibility, have been widely investigated as drug carriers. However, their application in light-induced drug release is limited by their reliance on ultraviolet (UV) light.
View Article and Find Full Text PDF