98%
921
2 minutes
20
The activation and infiltration of immune cells are hallmarks of ischemic stroke. However, the precise origins and the molecular alterations of these infiltrating cells post-stroke remain poorly characterized. Here, a murine model of stroke (permanent middle cerebral artery occlusion [p-MCAO]) is utilized to profile single-cell transcriptomes of immune cells in the brain and their potential origins, including the calvarial bone marrow (CBM), femur bone marrow (FBM), and peripheral blood mononuclear cells (PBMCs). This analysis reveals transcriptomically distinct populations of cerebral myeloid cells and brain-resident immune cells after stroke. These include a novel CD14 neutrophil subpopulation that transcriptomically resembles CBM neutrophils. Moreover, the sequential activation of transcription factor regulatory networks in neutrophils during stroke progression is delineated, many of which are unique to the CD14 population and underlie their acquisition of chemotaxis and granule release capacities. Two distinct origins of post-stroke disease-related immune cell subtypes are also identified: disease inflammatory macrophages, likely deriving from circulating monocytes in the skull, and transcriptionally immature disease-associated microglia, possibly arising from pre-existing homeostatic microglia. Together, a comprehensive molecular survey of post-stroke immune responses is performed, encompassing both local and distant bone marrow sites and peripheral blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967789 | PMC |
http://dx.doi.org/10.1002/advs.202408722 | DOI Listing |
Rev Med Liege
September 2025
Service de Diabétologie, Nutrition et Maladies métaboliques, CHU Liège, Belgique.
Type 1 diabetes (T1D) is an autoimmune chronic disease that leads to the destruction of pancreatic beta cells and thus requires lifelong insulin therapy. Constraints and adverse events associated to insulin therapy are well known as well as the risk of long-term complications linked to chronic hyperglycaemia. Symptomatic T1D is preceded by a preclinical asymptomatic period, which is characterized by the presence of at least two auto-antibodies against beta cell without disturbances of blood glucose control (stage 1) or, in addition to immunological biomarkers, by the presence of mild dysglycaemia reflecting a defect of early insulin secretion (stage 2).
View Article and Find Full Text PDFJ Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.
Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.
Brain Behav
September 2025
School of Pharmacy and Medical Technology, Putian University, Putian, China.
Background: Recent research has started to uncover an important connection between immune system activity and cognitive abilities. Although correlative associations have been documented, the causal mechanisms connecting specific immune cell subpopulations to cognitive capabilities remain insufficiently characterized. Our research aimed to determine directional relationships between distinct immune cell subtypes and cognitive function, potentially identifying targets for immunomodulatory interventions.
View Article and Find Full Text PDFMol Ther
September 2025
Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
The reduction of TCF-1 during CD8 T cell exhaustion leads to attenuated antitumor activity and diminished responsiveness to immune checkpoint inhibitors. However, how TCF-1 is downregulated remains unclear. Here, we showed that during CD8 T cell exhaustion, lnc-SUMF2-8, induced by transcription factor TOX, can bind to cytosolic TCF-1, and direct it to the lysosome for degradation.
View Article and Find Full Text PDF