Reliability in unidimensional ordinal data: A comparison of continuous and ordinal estimators.

Psychol Methods

Departement d'administration et fondements de l'education, Faculte des sciences de l'education, Universite de Montreal.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study challenges three common methodological beliefs and practices. The first question examines whether ordinal reliability estimators are more accurate than continuous estimators for unidimensional data with uncorrelated errors. Continuous estimators (e.g., coefficient alpha) can be applied to both continuous and ordinal data, while ordinal estimators (e.g., ordinal alpha and categorical omega) are specific to ordinal data. Although ordinal estimators are often argued to have conceptual advantages, comprehensive investigations into their accuracy are limited. The second question explores the relationship between skewness and kurtosis in ordinal data. Previous simulation studies have primarily examined cases where skewness and kurtosis change in the same direction, leaving gaps in understanding their independent effects. The third question addresses item response theory (IRT) models: Should the scaling constant always be fixed at the same value (e.g., 1.7)? To answer these questions, this study conducted a Monte Carlo simulation comparing four continuous estimators and eight ordinal estimators. The results indicated that most estimators achieved acceptable levels of accuracy. On average, ordinal estimators were slightly less accurate than continuous estimators, though the difference was smaller than what most users would consider practically significant (e.g., less than 0.01). However, ordinal alpha stood out as a notable exception, severely overestimating reliability across various conditions. Regarding the scaling constant in IRT models, the results indicated that its optimal value varied depending on the data type (e.g., dichotomous vs. polytomous). In some cases, values below 1.7 were optimal, while in others, values above 1.8 were optimal. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000739DOI Listing

Publication Analysis

Top Keywords

ordinal estimators
20
ordinal data
16
continuous estimators
16
ordinal
12
estimators
11
continuous ordinal
8
estimators accurate
8
accurate continuous
8
data ordinal
8
estimators ordinal
8

Similar Publications

Objective: Pain hypersensitivity and hypersensitivity to other sensory modalities (visual, auditory, olfactory, and tactile) are considered defining features in nociplastic pain states. A self-report measure of sensory sensitivity may help to characterize sensory profiles across pain populations. This study aimed to evaluate the psychometric properties of a newly developed Danish nine-item Sensory Sensitivity Profile (SSP) questionnaire in patients with fibromyalgia.

View Article and Find Full Text PDF

Objectives: To evaluate the predictive role of carotid stiffening, quantified using ultrafast pulse wave velocity (ufPWV), for assessing cardiovascular risk in young populations with no or elevated cardiovascular risk factors (CVRFs).

Materials And Methods: This study enrolled 180 young, apparently healthy individuals who underwent ufPWV measurements. They were classified into three groups: the CVRF-free group (n = 60), comprising current non-smokers with untreated blood pressure < 140/90 mmHg, fasting blood glucose (FBG) < 7.

View Article and Find Full Text PDF

Predicting ordinal responses such as school grades or rating scale data is a common task in the social and life sciences. Currently, two major streams of methodology exist for ordinal prediction: traditional statistical models such as the proportional odds model and machine learning (ML) methods such as random forest (RF) adapted to ordinal prediction. While methods from the latter stream have displayed high predictive performance, particularly for data characterized by non-linear effects, most of these methods do not support hierarchical data.

View Article and Find Full Text PDF

Training and Practice Gaps in Nursing Home Palliative Care: A Cross-Sectional Study.

J Am Geriatr Soc

September 2025

Division of Geriatrics and Palliative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA.

Background: Palliative care needs are prevalent among nursing home (NH) residents. However, access to and integration of palliative care services remain limited. NHs often rely on a workforce with varying levels of training and exposure to palliative care, which may influence care quality and consistency.

View Article and Find Full Text PDF

Predicting stimulated C-peptide in type 1 diabetes using machine learning: a web-based tool from the T1D exchange registry.

Diabetes Res Clin Pract

September 2025

Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.

Aims: The mixed-meal tolerance test (MMTT), though considered the gold standard for evaluating residual beta-cell function in type 1 diabetes mellitus (T1D), is impractical for routine use. We aimed to develop and validate a machine learning (ML) model to predict MMTT-stimulated C-peptide categories using routine clinical data.

Methods: Data from 319 individuals in the T1D Exchange Registry with complete MMTT and clinical information were analyzed.

View Article and Find Full Text PDF