The novel protein C variant p.C101F results in early intracellular degradation that drives type I protein C deficiency.

Int J Hematol

Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hereditary protein C (PC) deficiency is an inherited thrombophilic disorder caused by variants in the PC gene (PROC). We identified a novel PROC variant, c.302G>T, p.Cys101Phe (C101F), in a patient with type I PC deficiency. We analyzed the intracellular dynamics of the C101F variant of PC (PC-C101F) to elucidate the pathogenic mechanism underlying this condition. Wild-type PC (PC-WT) and PC-C101F were transiently expressed in HEK293 cells for expression and functional analyses. The PC antigen levels in the cell lysate and culture supernatant of PC-C101F-expressing cells were significantly lower than those of PC-WT-expressing cells. In cycloheximide (CHX) chase experiments, the intracellular PC antigen level gradually decreased in PC-C101F-expressing cells, but remained stable at 0 and 6 h in the presence of CHX/MG132. No significant difference in co-localization with the endoplasmic reticulum was observed between PC-C101F and PC-WT. 101Cys forms a disulfide bond with 106Cys, which is crucial for maintaining the conformation of PC. PC-C101F likely results in protein misfolding and proteasomal degradation, leading to type I PC deficiency. These findings highlight the importance of cysteine residues in the three-dimensional structure of PC and provide insight into the mechanism of type I PC deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-025-03943-zDOI Listing

Publication Analysis

Top Keywords

type deficiency
12
protein deficiency
8
pc-c101f-expressing cells
8
deficiency
5
novel protein
4
protein variant
4
variant pc101f
4
pc101f early
4
early intracellular
4
intracellular degradation
4

Similar Publications

Mammalian cell membranes contain ether lipids, which include an alkyl chain derived from a fatty alcohol that is produced by fatty acyl-CoA reductases (FARs). There are two mammalian FAR genes, and , and mutations in cause the peroxisomal fatty acyl-CoA reductase 1 disorder (PFCRD), which is accompanied by various symptoms, including neurological disorders. To date, the contributions of and to brain ether lipid production and the molecular mechanism of PFCRD have remained unknown.

View Article and Find Full Text PDF

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder caused by a deficiency of the hepatic peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which catalyses the conversion of glyoxylate to glycine, resulting in increased oxalate production. The clinical consequences of the progressive build up of oxalates include nephrocalcinosis, nephrolithiasis, chronic kidney disease and ultimately renal failure with extra-renal involvement. The diagnosis of PH1 is challenging due to the non-specific nature of its symptoms and the need for costly genetic testing.

View Article and Find Full Text PDF

Epizootic hemorrhagic disease virus (EHDV) causes severe disease in ruminants. We assessed the pathogenicity of the Chinese EHDV-7 isolate YN09 in mice lacking the type I interferon receptor and in sheep. In mice, YN09 infection resulted in 100% mortality, with histopathological lesions, viral replication, and immunoreactivity in multiple organs.

View Article and Find Full Text PDF

Type I interferon (IFN-I) is highly prevalent in autoimmune disorders and is intricately involved in disease pathogenesis, including Sjögren's disease (SjD), also known as Sjögren's syndrome. Although the T follicular helper (Tfh) cell response has been shown to drive SjD development in a mouse model of experimental Sjögren's syndrome (ESS), the connection between IFN-I and the Tfh cell response remains unclear. As the activation of stimulator of interferon genes (STING) induces IFN-I production, we first demonstrated that mice deficient in STING or IFN-I signaling presented diminished Tfh cells and were completely resistant to ESS development.

View Article and Find Full Text PDF

Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.

View Article and Find Full Text PDF