98%
921
2 minutes
20
The current era of high-throughput analysis-driven research offers invaluable insights into disease etiologies, accurate diagnostics, pathogenesis, and personalized therapy. In the field of movement disorders, investigators are facing an increasing growth in the volume of produced patient-derived datasets, providing substantial opportunities for precision medicine approaches based on extensive information accessibility and advanced annotation practices. Integrating data from multiple sources, including phenomics, genomics, and multi-omics, is crucial for comprehensively understanding different types of movement disorders. Here, we explore formats and analytics of big data generated for patients with movement disorders, including strategies to meaningfully share the data for optimized patient benefit. We review computational methods that are essential to accelerate the process of evaluating the increasing amounts of specialized data collected. Based on concrete examples, we highlight how bioinformatic approaches facilitate the translation of multidimensional biological information into clinically relevant knowledge. Moreover, we outline the feasibility of computer-aided therapeutic target evaluation, and we discuss the importance of expanding the focus of big data research to understudied phenotypes such as dystonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2025.107311 | DOI Listing |
J Diabetes
September 2025
Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Aims: Diabetes is a global public health crisis, especially when it is accompanied by microvascular complications such as diabetic kidney disease (DKD). The purpose of this study was to explore the relationship between the combined lifestyle factors of diabetes patients and their joint effects with genetic risk and the risk of DKD.
Materials And Methods: We included individuals diagnosed with diabetes at baseline from UK Biobank.
Ann Lab Med
September 2025
Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
BMJ Health Care Inform
September 2025
Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
Objectives: The objectives were to examine the associations between accelerometer-measured circadian rest-activity rhythm (CRAR), the most prominent circadian rhythm in humans and the risk of mortality from all-cause, cancer and cardiovascular disease (CVD) in patients with cancer.
Methods: 7456 cancer participants from the UK Biobank were included. All participants wore accelerometers from 2013 to 2015 and were followed up until 24 January 2024, with a median follow-up of 9.
Objectives: To investigate whether quantitative retinal markers, derived from multimodal retinal imaging, are associated with increased risk of mortality among individuals with proliferative diabetic retinopathy (PDR), the most severe form of diabetic retinopathy.
Design: Longitudinal retrospective cohort analysis.
Setting: This study was nested within the AlzEye cohort, which links longitudinal multimodal retinal imaging data routinely collected from a large tertiary ophthalmic institution in London, UK, with nationally held hospital admissions data across England.
Cell Signal
September 2025
Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Engin
Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.
View Article and Find Full Text PDF