Big data and transformative bioinformatics in genomic diagnostics and beyond.

Parkinsonism Relat Disord

Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current era of high-throughput analysis-driven research offers invaluable insights into disease etiologies, accurate diagnostics, pathogenesis, and personalized therapy. In the field of movement disorders, investigators are facing an increasing growth in the volume of produced patient-derived datasets, providing substantial opportunities for precision medicine approaches based on extensive information accessibility and advanced annotation practices. Integrating data from multiple sources, including phenomics, genomics, and multi-omics, is crucial for comprehensively understanding different types of movement disorders. Here, we explore formats and analytics of big data generated for patients with movement disorders, including strategies to meaningfully share the data for optimized patient benefit. We review computational methods that are essential to accelerate the process of evaluating the increasing amounts of specialized data collected. Based on concrete examples, we highlight how bioinformatic approaches facilitate the translation of multidimensional biological information into clinically relevant knowledge. Moreover, we outline the feasibility of computer-aided therapeutic target evaluation, and we discuss the importance of expanding the focus of big data research to understudied phenotypes such as dystonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2025.107311DOI Listing

Publication Analysis

Top Keywords

big data
12
movement disorders
12
data
5
data transformative
4
transformative bioinformatics
4
bioinformatics genomic
4
genomic diagnostics
4
diagnostics current
4
current era
4
era high-throughput
4

Similar Publications

Aims: Diabetes is a global public health crisis, especially when it is accompanied by microvascular complications such as diabetic kidney disease (DKD). The purpose of this study was to explore the relationship between the combined lifestyle factors of diabetes patients and their joint effects with genetic risk and the risk of DKD.

Materials And Methods: We included individuals diagnosed with diabetes at baseline from UK Biobank.

View Article and Find Full Text PDF

Wearable device-measured circadian rest-activity rhythm with mortality risk in patients with cancer.

BMJ Health Care Inform

September 2025

Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China

Objectives: The objectives were to examine the associations between accelerometer-measured circadian rest-activity rhythm (CRAR), the most prominent circadian rhythm in humans and the risk of mortality from all-cause, cancer and cardiovascular disease (CVD) in patients with cancer.

Methods: 7456 cancer participants from the UK Biobank were included. All participants wore accelerometers from 2013 to 2015 and were followed up until 24 January 2024, with a median follow-up of 9.

View Article and Find Full Text PDF

Objectives: To investigate whether quantitative retinal markers, derived from multimodal retinal imaging, are associated with increased risk of mortality among individuals with proliferative diabetic retinopathy (PDR), the most severe form of diabetic retinopathy.

Design: Longitudinal retrospective cohort analysis.

Setting: This study was nested within the AlzEye cohort, which links longitudinal multimodal retinal imaging data routinely collected from a large tertiary ophthalmic institution in London, UK, with nationally held hospital admissions data across England.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF