Effect of radio frequency pretreatment on the component of rapeseed and its product: Comparative study with microwave pretreatment under different oil extraction methods.

Food Chem

Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, C

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radio frequency (RF) is an emerging technology for rapeseed pretreatment, offering a comparison to the established microwave (MW) technique. This study investigated the effects of RF and MW pretreatment combined with different oil extraction methods on the oil yield, quality characteristics and lipid concomitant contents of rapeseed and its products. Results indicated that RF combined with pressing extraction yielded the highest tocopherol and canolol contents in rapeseed oil (839.6 and 1316.4 mg/kg, 8.0 % and 7.9 times higher than the control, respectively), and MW combined with supercritical carbon dioxide fluid extraction yielded the highest phytosterol content (8402.0 mg/kg, 16.6 % higher than the control). These results indicate the effectiveness of RF as a novel pretreatment method for rapeseed and its potentially greater advantage than MW. Results also imply that RF could contribute to sustainable and efficient oil extraction processes in the future food industry owing to its high efficiency and energy-saving capability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.143167DOI Listing

Publication Analysis

Top Keywords

oil extraction
12
radio frequency
8
extraction methods
8
contents rapeseed
8
extraction yielded
8
yielded highest
8
higher control
8
pretreatment
5
rapeseed
5
oil
5

Similar Publications

The control of dengue vector mosquitoes by utilizing plant-based eco-friendly larvicides is pivotal in suppressing the spread of dengue with minimum environmental toxicity. This study aimed to evaluate the larvicidal activity of nanoliposomes containing p-cresol and Myristica fragrans Houtt. essential oil (EO) against Aedes aegypti L.

View Article and Find Full Text PDF

Indigenous medicine applications, phytochemical and pharmacological properties of Asteriscus graveolens: A comprehensive overview.

Fitoterapia

September 2025

African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.

Asteriscus graveolens (A. graveolens) belongs to the family Asteraceae. It is native to North Africa and the Asian deserts, with the majority of its distribution in Southwest Algeria and Southeast Morocco.

View Article and Find Full Text PDF

The legalization of cannabis in several states across the United States has increased the need to better understand its effects on the body, brain, and behavior, particularly in different populations. Previous rodent studies have revealed age and sex differences in response to injected Δ-tetrahydrocannabinol (THC). However, the pharmacokinetic and pharmacodynamic properties of THC administered through more translationally relevant routes of administration are less well known.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF

Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.

View Article and Find Full Text PDF