98%
921
2 minutes
20
Biogenic selenium nanoparticles (SeNPs) have emerged as promising area of research due to their unique properties and potential multifaceted applications. The biosynthesis of SeNPs through biological methods, such as using microorganism, plant extracts, etc., offers a safe, eco-friendly, and biocompatible approach, compared to traditional chemical synthesis. Recent several studies demonstrated that multifaceted application of SeNPs includes a broad area such as antibacterial, anticancer, antioxidant, antiviral, anti-inflammatory, antidiabetic, and excellent wound healing activity. On the other hand, SeNPs have also shown promising application in sensing of inorganic toxic metals, electrochemistry, agro-industries, aqua-cultures, and in fabrication of solar panels. Additionally, SeNPs capability to enhance the efficacy of traditional antibiotics and act as effective agents against multidrug-resistant pathogens has shown their potential in addressing critical health challenges. Although, the SeNPs exhibit wide applicability, the potential toxicity of Se, particularly in its various oxidative states, necessitates careful assessment of the environmental and health impacts associated with their use. Therefore, understanding the balance between their beneficial properties and potential risks is crucial for its safe applications. This review focuses exclusively on SeNPs synthesized via eco-friendly process, excluding research utilizing other synthesis processes. Moreover, this review aims to offer an overview of the diverse applications, potential risks, stability requirement, and cytocompatibility requirement, and multifaceted opportunities associated with SeNPs. Ultimately, the review bridges a gap in knowledge by providing an updated details of multifaceted applications of SeNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/znc-2024-0176 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France
Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:
Selenite contamination poses a significant environmental risk due to its high toxicity, mobility, and bioavailability, and further threatens ecological stability and human health via biological accumulation in trophic chains. Microbial transformation of selenite into selenium nanoparticles (SeNPs) represents a promising and sustainable bioremediation strategy. However, the underlying mechanisms in environmentally prevalent yeasts remain largely uncharacterized.
View Article and Find Full Text PDFBiol Trace Elem Res
September 2025
Department of Biotechnology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamilnadu, India, 620 024.
The current agricultural system faces the critical challenge of providing sustenance to the global population. There is a deep concern about the huge food demand and security driven by the burgeoning global population. Further, urbanization and modernization lead to a significant reduction in arable land, subsequently hindering crop production.
View Article and Find Full Text PDFACS Omega
August 2025
School of Nursing and Health Management, Wuhan Donghu College, Wuhan 430212, China.
Selenium nanoparticles (SeNPs) exhibit tumor-suppressive capabilities via reactive oxygen species (ROS)-mediated mitochondrial dysfunction, yet their biomedical application remains constrained by poor targeting specificity and aqueous instability. Herein, we engineered glutathione-responsive therapeutic nanoparticles by encapsulating SeNPs within mesoporous organosilica (MON) isolation layers to ensure aqueous stability, while conjugating LXL-1 aptamers for targeted delivery to triple-negative MDA-MB-231 breast cancer cells. In vitro assessments across breast cell lines (MDA-MB-231 vs MCF-10A/MCF-7) revealed a 5.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
Cadmium (Cd) contamination has become a major environmental issue and has toxic effects on agricultural crops. Selenium (Se) is an essential trace element that plays an important role due to its impact on several physiological and biochemical processes in plants. This study addresses the mechanistic insights into the role of SeNPs in enhancing Cd stress tolerance, thereby contributing to sustainable nano-agronomic strategies for the soils contaminated with heavy metals (HMs).
View Article and Find Full Text PDF