Multi-dimensional, Multi-scale Analysis of Interphase Chemistry for Enhanced Fast-Charging of Lithium-Ion Batteries with Ion Mass Spectrometry.

J Am Chem Soc

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the fundamental properties of electrode-electrolyte interphases (EEIs) is essential for designing electrolytes that support stable operation under high charging rates. In this study, we benchmark our fast-charging electrolyte (FCE) against the commercial LP57 electrolyte to identify the EEI characteristics that enhance fast-charging performance. By utilizing the latest advances in time-of-flight secondary ion mass spectrometry (TOF-SIMS) and focused-ion beam (FIB) techniques, we reveal the complex chemical architecture of the cathode-electrolyte interphase (CEI). Our findings indicate that stable battery operation under fast-charging conditions requires reduced surface reactivity rather than stabilizing the bulk integrity of the cathode. While inorganic species are often cited as beneficial for EEI composition, their distribution within the EEI is equally critical. Additionally, dynamic interactions between the cathode material and conductive carbon significantly affect CEI formation and alter the passivation layer chemistry. A chemically homogeneous distribution of CEI components passivating preferentially the active material particles is desired for enhanced performance. Notably, the amount of electrolyte decomposition species in the solid-electrolyte interphase (SEI) far outweighs their distribution within the SEI in determining better electrochemical performance. An inorganic-rich SEI effectively protects graphite particles, suppresses the accumulation of metallic lithium, and prevents the formation of lithium dendrites. Overall, an enhanced fast-charging performance can be achieved by tuning the interphase chemistry and architecture on both the cathode and anode sides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c16561DOI Listing

Publication Analysis

Top Keywords

interphase chemistry
8
enhanced fast-charging
8
ion mass
8
mass spectrometry
8
fast-charging performance
8
fast-charging
5
multi-dimensional multi-scale
4
multi-scale analysis
4
interphase
4
analysis interphase
4

Similar Publications

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Molecular engineering of two-dimensional polyamide interphase layers for anode-free lithium metal batteries.

Nat Mater

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.

Anode-free lithium (Li) metal batteries are promising candidates for high-performance energy storage applications. Nonetheless, their translation into practical applications has been hindered by the slow kinetics and reversibility of Li plating and stripping on copper foils. Here we report a two-dimensional polyamide (2DPA)/lithiated Nafion (LN) interphase layer for anode-free Li metal batteries.

View Article and Find Full Text PDF

Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF

This study pioneers the use of organic nitrate C(NH)NO as an electrolyte additive in lithium metal batteries (LMBs). C(NH)NO can effectively construct a high-quality solid electrolyte interphase (SEI) on the lithium metal anode, thereby enabling dendrite-free and uniform spherical lithium (Li) deposition.

View Article and Find Full Text PDF