98%
921
2 minutes
20
Microplastics (MPs) are continuously found in soil and water environments. Within aquatic ecosystems, filter-feeding organisms are unable to discriminate MPs from food particles while fish may intentionally ingest MPs by mistaking them for prey. In both cases, MPs can accumulate in tissues with subsequent implications for human and environmental health. The modes of action of MPs are still not fully understood and hence the toxicological effects of these pollutants cannot be fully evaluated. This study aims to improve our understanding of the modes of action and toxicological effects of MPs using a multimodal approach. In the present study, Daphnia magna was deployed as a model to investigate the acute effects of MPs by exposing D. magna specimens for 24 h to fluorophore-coated polyethylene MPs. A multimodal approach, combining fluorescence imaging and mass spectrometry imaging (MSI), was employed to assess the implications of MPs exposures. Fluorescent microscopy revealed a significant accumulation of MPs in the gut of D. magna after acute exposure. Secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) imaging were used to study the distribution and potential metabolic effects in exposed D. magna. ToF-SIMS revealed specific fragmentation patterns for polyethylene MPs, with the m/z 43 ion being the most suitable for identifying polyethylene MPs in biological tissue samples. MALDI-MSI showed specific ion types for the eye, gut, optical ganglion, first antennae, and egg tissues of D. magna. MSI data revealed minor alterations in specific regions of D. magna, such as eggs and gut, of D. magna after MPs exposure. The local changes were mainly found in the nucleotide and lipid metabolism within the eggs. In the gut, changes between control and MPs-exposed groups were potentially linked to plastic additives. Overall, the results of this work underline the potential of multimodal approaches based on MSI to study challenging pollutants, such as MPs, and their interactions with tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2025.107253 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFNanoImpact
September 2025
Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun 136100, China. Electronic address:
Microplastics (MPs) pollution threatens aquatic and terrestrial ecosystems. Herein, we assessed the uptake of MPs in seedling roots of three crop species exposed to small (0.2 μm) and large (1.
View Article and Find Full Text PDFJ Vis Exp
August 2025
School of Marine and Atmospheric Science, Stony Brook University.
The protocol presented here enables the quantification of microplastics (MPs) as small as ~1 µm in diameter, accurate identification of polymer types, and estimation of particle volume, critically allowing for the calculation of MP mass. Representative results from samples collected in the Great South Bay (GSB), NY, showed that particles within the 1-6 µm equivalent spherical diameter (ESD) range were the most abundant, with approximately 75% of particles measuring less than 5 µm. Notably, the pre-sieving step failed to yield any particles larger than 60 µm, suggesting that large MPs were rare at the coastal sites sampled.
View Article and Find Full Text PDFForensic Sci Int Synerg
December 2025
DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101 Philippines.
Massively parallel sequencing (MPS) has caused a paradigm shift in forensic DNA analysis by enabling simultaneous examination of multiple genetic markers with higher resolution. Despite its growing importance, adoption in the 11 Southeast Asian countries remains limited. This paper reviews MPS implementation in forensic DNA laboratories across the region and discusses key adoption challenges.
View Article and Find Full Text PDFInt J Womens Health
September 2025
Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, UP, India.
Microplastics (MPs), defined as plastic particles smaller than 5 mm, have emerged as a significant environmental pollutant, raising concerns about their potential health risks. Emerging evidence shows that MPs can reach human tissues, including the placenta, causing oxidative stress, inflammation, and endocrine disruption These issues are particularly concerning for vulnerable populations like pregnant women and infants, where exposure could negatively impact fetal development and health outcomes. This systematic review, adhering to PRISMA guidelines, aimed to identify and evaluate studies on the impact of microplastic exposure on pregnancy outcomes and early childhood development.
View Article and Find Full Text PDF