Publications by authors named "Lidia Molina-Millan"

Microplastics (MPs) are continuously found in soil and water environments. Within aquatic ecosystems, filter-feeding organisms are unable to discriminate MPs from food particles while fish may intentionally ingest MPs by mistaking them for prey. In both cases, MPs can accumulate in tissues with subsequent implications for human and environmental health.

View Article and Find Full Text PDF

Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers.

View Article and Find Full Text PDF

Microplastic pollution poses a significant environmental threat due to its persistence, widespread distribution, and inherent toxic potential. Despite the increasing number of publications in this field, a standardized protocol for the laboratory intake of microplastics by has yet to be established. In this study, we introduce a verified protocol designed to facilitate the ingestion of microplastic particles (MPs) by , ranging in size from 5-55 µm.

View Article and Find Full Text PDF

Synthetic polymers are ubiquitous in daily life, and their properties offer diverse benefits in numerous applications. However, synthetic polymers also present an increasing environmental burden through their improper disposal and subsequent degradation into secondary micro- and nanoparticles (MNPs). These MNPs accumulate in soil and water environments and can ultimately end up in the food chain, resulting in potential health risks.

View Article and Find Full Text PDF