Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: In the present work, DFT/TDDFT techniques is used to analyze structure, bonding, reactivity and electronic transitions of quercetin, morin, myricetin with their metal (Cu and Zn) complexes. In order to comprehend metal complexes and ligands reactivity patterns, we calculated energy gaps between frontier molecular orbitals. Global reactivity characteristics, such as ionization potential, electronegativity (χ), hardness (η), softness (S), electrophilicity index (ω) electron affinity, and chemical potential (μ), were computed based on the FMO energies. Molecular electrostatic potential (MEP) maps were used to identify nucleophilic and electrophilic sites in complexes. Within the examined complexes, TDDFT and NBO analysis shed light on bonding, electronic transitions and stabilizing interactions. Ligands morin, myricetin, and quercetin exhibited higher HOMO-LUMO gap than their corresponding metal complexes, suggesting electron transfer may be faster in the metal complexes. The metal complexes displayed more negative electrostatic potentials. The absorption spectra of the ligands ranged from 258 to 360 nm, whereas their complexes exhibited a broader range from 252 to 1035 nm. These spectra provided important insights into charge transfer and electronic transitions, enhancing our knowledge of electronic and bonding characteristics of such compounds.

Methods: G16 software is used to optimize all species. B3LYP functional was employed in combination with LanL2DZ basis set for Cu and Zn, and 6-311G(d,p) basis set for other atoms (C, H and O). Natural bond orbital examination was conducted in order to investigate interactions between the filled orbitals of one unit and empty orbitals of other unit. ORCA software was utilized to compute spectral features, incorporating ZORA method to account for relativistic effects. TDDFT studies is carried out using B3LYP functional to calculate excitation energies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-025-06296-wDOI Listing

Publication Analysis

Top Keywords

metal complexes
20
morin myricetin
12
electronic transitions
12
complexes
9
myricetin quercetin
8
b3lyp functional
8
basis set
8
orbitals unit
8
metal
5
structures bonding
4

Similar Publications

Co and CoPc Molecular Kondo Box on Gold Surface.

Phys Rev Lett

August 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

We demonstrate a class of Co and CoPc molecular Kondo boxes on the Au(111) surface through scanning tunneling microscopy experiments and first-principles calculations. The π-electron states of the CoPc molecule hybridize with the conduction electron states of the Au(111) substrate, imparting itinerantlike electron characteristics. Because of the high symmetry matching between the d_{π} orbitals of Co adatoms and the π orbitals of CoPc, the large orbital overlap predominates the formation of a Kondo singlet within the molecular complexes that prevail over the competition from the metal substrate, enabling them effectively as the molecular Kondo boxes.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

We report the synthesis of homoleptic two-coordinate Co and Ni complexes supported by a sterically hindered NIm ligand (1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato). Their formulation as two-coordinate complexes was verified by single-crystal X-ray diffraction analyses, and their M-N bond distances are between those in the reported transition-metal imido and amido complexes, suggesting a multiple-bond character. These coordinatively unsaturated complexes readily react with GeCl·dioxane, affording bimetallic Co/Ge and Ni/Ge complexes, demonstrating facile and rational syntheses of heterobimetallic complexes.

View Article and Find Full Text PDF

Multi-layered and orthogonal recognition is an excellent route to controlled molecular complexity. Here we report a series of heteroleptic complexes where two ligands pair together at a palladium(II) metal centre in complementary fashion and with orthogonality to others pairs. This complementarity is driven in part through hydrogen-bonding acceptor or donor sites proximal to the coordination domain (either DD:AA or AD:DA).

View Article and Find Full Text PDF

Serendipitous synthesis of 4,4',6,6'-tetrakis(diphenylphosphino)-2,2'-bi(-triazine) (Tr2P4) - a novel promising polyphosphine ligand - from cyanuric chloride and diphenylphosphine is reported. This unusual reaction represents the first example of tandem C-C/C-P coupling between (het)aryl halides and P-H species, yielding a structurally unique bi(hetaryl)-tetraphosphine. Theoretical study indicates that the 2,2'-bi(-triazine) core arises from hydrolysis of an intermediate [PhP(TrCl)] salt, formed through quaternization of monophosphine Tr(PPh)Cl with cyanuric chloride.

View Article and Find Full Text PDF