This research examines the corrosion inhibition efficiency of two novel compounds, AEPA and DOCA, on carbon steel in 1.0 M hydrochloric acid. Both AEPA and DOCA demonstrated excellent electrochemical performance as corrosion inhibitors, with inhibition efficiencies exceeding 93% at a concentration of 10 mM, as confirmed through potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical impedance spectroscopy (EIS) techniques.
View Article and Find Full Text PDFThis study investigates the corrosion inhibition efficiency of safflower plant (SP) extract on carbon steel in hydrochloric acid (HCl) solutions. The SP extract, obtained through Soxhlet extraction, was tested for its ability to reduce corrosion using electrochemical techniques, including potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM). The study revealed that the SP extract functions as an effective mixed-type inhibitor, significantly reducing the corrosion current density and enhancing inhibition efficiency at concentrations up to 2.
View Article and Find Full Text PDFHere we explored the influence of axial ligands on the structural, electronic, and photophysical properties of Mn(II)(TPP)(1,3-MeImd)(L) complexes, where L = -NH, -OCH, -SH, -Cl, and -NO, using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Frontier molecular orbital analysis was performed to assess the reactivity behavior of the complexes which exhibit strong nonlinear optical properties due to their high polarizability. The nature of bonding and charge distribution was further investigated through electrostatic potential mapping, quantum theory of atoms in molecules, electron localization function and localized orbital locator analyses.
View Article and Find Full Text PDFContext: In the present work, DFT/TDDFT techniques is used to analyze structure, bonding, reactivity and electronic transitions of quercetin, morin, myricetin with their metal (Cu and Zn) complexes. In order to comprehend metal complexes and ligands reactivity patterns, we calculated energy gaps between frontier molecular orbitals. Global reactivity characteristics, such as ionization potential, electronegativity (χ), hardness (η), softness (S), electrophilicity index (ω) electron affinity, and chemical potential (μ), were computed based on the FMO energies.
View Article and Find Full Text PDFMulticomponent reactions have long been recognized as some of the most versatile tools in organic chemistry, with extensive applications in biomedical science and the pharmaceutical industry. In this study, we explored the potential of the Passerini reaction by designing and synthesizing new low molecular mass gelators that can serve as novel formulations for prolonged anesthesia. These gelators address critical issues like poor solubility, low bioavailability, and short plasma half-life, all of which hinder therapeutic efficacy.
View Article and Find Full Text PDFA unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain.
View Article and Find Full Text PDFAs the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality.
View Article and Find Full Text PDFThe traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure.
View Article and Find Full Text PDFHeterocyclic compounds containing 1,2,3-triazole and isatin as core structures have emerged as promising drug candidates due to their diverse biological activities such as anti-cancer, antifungal, antimicrobial, antitumor, anti-epileptic, antiviral, and more. The presence of 1,2,3-triazoles and isatin heterocycles in these hybrids, both individually known for their medicinal significance, has increasingly piqued the interest of drug discovery researchers, as they seek to delve deeper into their extensive pharmacological potential for enhancing therapeutic efficacy. Moreover, these hybrid compounds are synthetically accessible using readily available materials.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeO (species 1) and CoO ↔ Co-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity.
View Article and Find Full Text PDFLow-molecular-mass gelators, due to their excellent biocompatibility, low toxicological profile, innate biodegradability and ease of fabrication have garnered significant interest as they self-assemble through non-covalent interactions. In this study, we have designed and synthesized a series of six α-amidoamides by varying the hydrophobic alkyl chain length (C-C), which were well characterized using different spectral techniques. These α-amidoamides formed self-assembled aggregates in a DMSO/water solvent system affording organo/hydrogels at 0.
View Article and Find Full Text PDFHerein, metal-organic framework (MOF)-based adsorbents are designed with distinct hard and soft metal building units, namely, [CoCo(PD)(BP)] () and [CuCu(PD)(BP)] (), where HPD = pyrazine-1,4-diide-2,3-dicarboxylic acid and BP = 4,4'-bipyridine. The designed MOFs were characterized via spectral and SCXRD techniques, which confirm the mixed-valent states (+1 and +2) of the metal ions. Topological analysis revealed the rare and topologies for Co MOF, while Cu-MOF exhibits a unique topology in the 8-c net (point symbol for net: {4·6}).
View Article and Find Full Text PDFOwing to their high reactivity and selectivity, variations in the spin ground state and a range of possible pathways, high-valent Fe =O species are popular models with potential bioinspired applications. An interesting example of a structure-reactivity pattern is the detailed study with five nonheme amine-pyridine pentadentate ligand Fe =O species, including N4py: [(L )Fe =O] (1), bntpen: [(L )Fe =O] (2), py tacn: [(L )Fe =O] (3), and two isomeric bispidine derivatives: [(L )Fe =O] (4) and [(L )Fe =O] (5). In this set, the order of increasing reactivity in the hydroxylation of cyclohexane differs from that with cyclohexadiene as substrate.
View Article and Find Full Text PDFContext: Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes.
View Article and Find Full Text PDFBackground And Aim: Understanding the prevalence and impact of SARS-CoV-2 variants has assumed paramount importance. This study statistically analyzed to effectively track the emergence and spread of the variants and highlights the importance of such investigations in developing potential next-gen vaccine to combat the continuously emerging Omicron subvariants.
Methods: Transmission fitness advantage and effective reproductive number ( ) of epidemiologically relevant SARS-CoV-2 sublineages through time during the study period based on the GISAID data were estimated.
Context: Understanding the photochemistry of boron nitrogen (BN)-containing compounds is an important aspect to enhance the various optical and electronic applications. In this work, we have explored the structure, bonding, reactivity, electronic absorption (UV-Vis), and light harvesting efficiency (LHE) of a series of BN ring and open-chain systems. The frontier molecular orbitals (FMO) analysis found that ring systems have a low HOMO-LUMO energy gap as compared to the open-chain systems which insinuates the feasibility of ring systems in the optoelectronic materials.
View Article and Find Full Text PDFTerminal metal-oxo species of the early transition metal series are well known, whereas those for the late transition series are rare, and this is related to the "Oxo Wall". Here, we have undertaken a theoretical study on the formation of metal-oxo species from the metal hydroperoxo species of the 3d series (Cr, Mn, Fe, Co, Ni, and Cu) with the ligand 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) O⋯O bond cleavage. DFT calculations reveal that the barrier for O⋯O bond cleavage is higher with the late transition metals (Co, Ni, and Cu) than the early transition metals (Cr, Mn, and Fe), and the formed late metal-oxo species are also thermodynamically less stable.
View Article and Find Full Text PDFActivation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [MHbuea(O/OH)] (M = Mn and Fe, = II to V; Hbuea = tris[('--butylureaylato)--ethylene)]aminato towards the activation of dihydroanthracene (DHA).
View Article and Find Full Text PDFInt J Surg
December 2022
Recent years have witnessed a growing interest in the biological activity of metal complexes of -aminophosphonates. Here for the first time, a detailed DFT study on five -aminophosphonate ligated mononuclear/dinuclear Cu complexes is reported using the dispersion corrected density functional (B3LYP-D2) method. The electronic structures spin densities, FMO analysis, energetic description of spin states, and theoretical reactivity behaviour using molecular electrostatic potential (MEP) maps of all five species are reported.
View Article and Find Full Text PDF