Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: An automated pupillometer is a handheld device used to stimulate the pupillary light response (PLR) and track the entirety of the response from constriction to dilation. Pupillometers provide objective data that clinicians can use to identify and assess brain injury. The validity of these devices has been previously established; however, the inter-rater and inter-trial reliability are unknown.

Purpose: The purpose of this study was to assess the inter-rater and inter-trial reliability of the NeurOptics PLR-3000 pupillometer device in measuring pupil size changes, constriction velocities, and dilation velocities. The authors hypothesized that inter-rater and inter-trial reliability would have intraclass correlation coefficients (ICC) greater than or equal to 0.70 for all PLR parameters.

Study: Design: Observational, reliability study Methods: Forty-eight healthy adults (age 18-40 years) without a history of neurological injury, optical surgery, or cognitive impairment participated. Two independent raters used the NeurOptics PLR-3000 to measure PLR parameters in the left and right eyes of each subject. Data for the average and individual trials of each PLR parameter were used to determine inter-rater and inter-trial reliability, respectively. Inter-rater and inter-trial reliability was evaluated using descriptive statistics, ICC, the standard error of measurement, Bland-Altman plots, and the minimal detectable change.

Results: Seven out of eight NeurOptics 3000-PLR parameters demonstrated moderate-to-excellent inter-rater (ICC range 0.72-0.96) and good-to-excellent inter-trial reliability (ICC range 0.76-0.98). The 75% recovery time parameter exhibited moderate inter-rater (ICC range 0.64-0.67) and poor-to-moderate inter-trial (ICC range 0.41-0.65) reliability.

Conclusion: The NeurOptics 3000-PLR demonstrated acceptable reliability in measuring initial and end pupil size, constriction and dilation velocity, and latency to change between different users and trials. However, the device exhibited unacceptable reliability when measuring the time to 75% pupil size recovery. The device can be used in detecting and monitoring brain injury but should be limited to reliable measures only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788083PMC
http://dx.doi.org/10.26603/001c.128047DOI Listing

Publication Analysis

Top Keywords

inter-trial reliability
28
inter-rater inter-trial
24
icc range
16
pupil size
12
reliability
10
inter-trial
8
reliability neuroptics
8
pupillary light
8
constriction dilation
8
brain injury
8

Similar Publications

Alzheimer's disease (AD) presents a critical global health challenge, with current therapies offering limited efficacy and safety in halting disease progression. Gamma sensory stimulation (GSS) has emerged as a promising non-invasive neuromodulation technique that enhances gamma neural synchrony, potentially counteracting AD pathology by promoting glymphatic clearance, reducing neuroinflammation and improving synaptic plasticity. However, existing GSS delivery methods rely on simplistic sensory stimuli that lack user engagement, potentially creating adherence barriers and limiting the full therapeutic potential of this approach.

View Article and Find Full Text PDF

The aims were to examine the validity and within-session inter-trial, intra- and interrater reliability of sprint force-velocity profiling (FVP) techniques in elite football. Twelve elite youth football players from an English Premier League academy participated in this study. A 30-m maximal effort linear sprint testing protocol was conducted, simultaneously measured using the MySprint app, GPS units, and radar device to derive theoretical maximal horizontal force (F0), theoretical maximal running velocity (V0), and the overall orientation of the profile (FVslope).

View Article and Find Full Text PDF

Aberrant gamma oscillations in major depressive disorder (MDD) have attracted extensive attention, but evidence delineating such neural signatures is lacking. The auditory steady-state response (ASSR) elicited by periodic auditory stimuli is a robust probe of gamma oscillations. Here, we sought to characterize early transient auditory evoked responses (AEPs) and sustained gamma ASSRs in MDD, thereby identifying reliable neurophysiological signatures and providing preliminary interpretations of gamma auditory response deficits in MDD.

View Article and Find Full Text PDF

Retinal degeneration increases inter-trial variabilities of light-evoked spiking activities in ganglion cells.

Exp Eye Res

April 2025

Brain Science Institute, KIST (Korea Institute of Science and Technology), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science & Technology, Seoul, Republic of Korea; KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul, Republ

Retinal ganglion cells (RGCs) transmit visual information to the brain in the form of spike trains, which form visual perception. The reliabilities of spike timing and count are thought to play a crucial role in generating stable percepts. However, the effect of retinal degeneration on spike reproducibility remains underexplored.

View Article and Find Full Text PDF

Detection of latent brain states from spontaneous neural activity in the amygdala.

PLoS Comput Biol

February 2025

Department of Physiology, University of Arizona, Tucson, Arizona, United States of America.

The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity.

View Article and Find Full Text PDF