98%
921
2 minutes
20
Several lines of evidence have shown that platelet-derived factors are key molecules in brain-body communication in pathological conditions. Here, we identify platelets as key actors in the modulation of fear behaviors in mice through the control of inhibitory neurotransmission and plasticity in the hippocampus. Interfering with platelet number or activation reduces hippocampal serotonin (5-HT) and modulates fear learning and memory in mice, and this effect is reversed by serotonin replacement by serotonin precursor (5-HTP)/benserazide. In addition, we unravel that natural killer (NK) cells participate in this mechanism, regulating interleukin-13 (IL-13) levels in the gut, with effects on serotonin production by enterochromaffin cells and uptake by platelets. Both NK cells and platelet depletion reduce the activation of hippocampal inhibitory neurons and increase the long-term potentiation of synaptic transmission. Understanding the role of platelets in the modulation of neuro-immune interactions offers additional tools for the definition of the molecular and cellular elements involved in the growing field of brain-body communication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2025.115261 | DOI Listing |
Rev Esp Anestesiol Reanim (Engl Ed)
September 2025
Department of Neurology, Xuzhou Central Hospital, Xuzhou, China. Electronic address:
Objective: This study aims to investigate the effects of anaesthesia and surgical procedures on the cognitive function of both young and aged mice. It will also explore the role and mechanisms of c-Fos expression in altering hippocampal neuron excitability and its relationship with perioperative neurocognitive disorders in mice.
Methods: In this study, we used a murine laparotomy model to assess cognitive behavioural changes in both young and aged mice at 1, 3, and 7 days post-surgery.
FASEB J
September 2025
Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.
View Article and Find Full Text PDFChem Biol Interact
September 2025
School of Public Health, Ningxia Medical University (Yinchuan City, Ningxia Hui Autonomous Region, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, China. Electronic address: hmin81
Paraquat (PQ) is characterized by neurotoxicity. In daily life, PQ exposure mainly occurs through chronic and trace pathways, which induce progressive neuronal damage or neuronal synaptic loss. Previously, mitochondrial dysfunction was a critical underlying mechanism.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
August 2025
Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Dongguan No.7 People's Hospital (Dongguan Mental Health Center), Dongguan, China; Neuroscience Section, BGI Life Science Research Institute, Hangzhou, China. Elect
Background: Sleep disorders show comorbidity with depression and Alzheimer's disease (AD), especially in ageing. However, the neuroimmunological role of sleep deprivation (SD) as possible inducer to these conditions remains unknown. Omega-3 fatty acids (n-3 FAs) can improve depression and AD through anti-inflammation, up-regulating neurotrophins and normalizing neurotransmitters, while their therapeutic effects on sleep deprivation (SD)-induced changes in different ages requires investigation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Diso
Schizophrenia (SCZ) and bipolar disorder (BPD) are highly heritable psychiatric disorders with complex genetic and environmental underpinnings. Allele-specific expression (ASE) has emerged as a critical mechanism linking noncoding genetic variants to disease risk through epigenetic and environmental modulation. Here, whole-genome and transcriptome analyses of monozygotic twin pairs discordant for BPD or SCZ are performed, identifying that noncoding genetic variants drive differential ASE patterns of long noncoding RNAs (lncRNAs) in affected individuals compared to their unaffected co-twins.
View Article and Find Full Text PDF