Assessing human toxicity and ecotoxicity impacts of agricultural pesticide use in Iran based on the USEtox model.

Ecotoxicol Environ Saf

Workplace Health Promotion Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human health and ecotoxicity impacts of agricultural pesticide use in Iran in 2022 were estimated. The impacts of agricultural pesticide use in Iran by pesticide, crop, and province were assessed based on the USEtox model in terms of disability-adjusted life year (DALY) for human health and potentially disappeared fraction of freshwater ecosystem species (PDF) for ecotoxicity. The annual mass of agricultural pesticide use in Iran in 2022 was 17,188 tons, consisting of herbicides (46.2 %), insecticides (30.0 %), and fungicides (23.8 %). The DALYs and DALY rate (per 100,000 people) of agricultural pesticide use in Iran were determined to be 25,140 and 29.4, respectively. The ecotoxicity impact of agricultural pesticide use in Iran was calculated to be 3.35 × 10 PDF m d. Over 79 % of the human health and ecotoxicity impacts of agricultural pesticide use were attributed to six pesticides (chlorpyrifos, deltamethrin, ethion, phosalone, thiodicarb, and abamectin) and eight crops (pistachio, apple, fig, vegetables, date, orange, wheat and barley, and cotton). While the contributions of the pesticides to the human health and ecotoxicity impact were not the same, chlorpyrifos ranked highest in both human health (28.8 %) and ecotoxicity (49.9 %) impacts. The highest provincial human health and ecotoxicity impacts of agricultural pesticide use were observed in Tehran (4,201 DALYs) and Fars (3.66 ×10 PDF m d), respectively. The provincial human health and ecotoxicity impacts were mainly driven by population and cropland area, respectively. Given the considerable human health and ecotoxicity impacts, developing national and provincial action plans for more sustainable use of pesticides in Iran is strongly recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2025.117785DOI Listing

Publication Analysis

Top Keywords

agricultural pesticide
32
human health
32
ecotoxicity impacts
24
pesticide iran
24
health ecotoxicity
24
impacts agricultural
20
ecotoxicity
10
pesticide
9
impacts
8
agricultural
8

Similar Publications

The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.

View Article and Find Full Text PDF

Enantioselective hepatotoxicity of rac- epoxiconazole and epoxiconazole enantiomers in lizards (Eremias argus).

J Hazard Mater

September 2025

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China. Electronic address:

Epoxiconazole (EPX) is widely applied to control various fungal diseases in crops. However, the toxicological effects of EPX on reptiles remain unknown, especially at the enantiomer level. In this study, lizards were repeatedly exposed to rac-EPX, (+)-EPX, and (-)-EPX at doses of 10 and 100 mg/kg bw for 21 days.

View Article and Find Full Text PDF

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF