Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vacuum ultraviolet (VUV) is profitable to strengthen the efficiencies of UV and reduce chemicals use, attracting more attention to water and wastewater purification. Herein, VUV-based water treatment processes from unitary VUV to multicomponent systems were reviewed for the first time to promote VUV applications. The rate of pollutant removal by unitary VUV was 1.3-57 times that of UV, in which hydroxyl radical oxidation was dominant. And the reducibility of hydrated electron and hydrogen atom radical in unitary VUV dehalogenated organics and reduced metal ions. Besides, VUV-based binary systems mainly included processes of VUV/HO, VUV/persulfate, VUV/ozone, VUV/chlorine, VUV/sulfite, VUV/iron ion, and VUV-based heterogeneous oxidation. VUV-based ternary systems basically contained three types: VUV-based Fenton-like, VUV coupling dual oxidants, and VUV combined with other technologies activating oxidants. Performance, characteristics, reactive species, and mechanisms of VUV-based binary and ternary systems were summarized. Moreover, the characterization, contribution, and role of reactive species in VUV-based processes were analyzed, and the combination of multiple methods was conducive to accurately identifying the mechanism of reactive species. Furthermore, the combination of VUV and other technologies expanded the application potential of VUV. Compared to UV-based processes, VUV-based processes significantly reduced energy consumption and were more promising in removing contaminants in actual waters. Finally, hot spots and directions (develop new techniques, reduce by-products, combine simulation and experiment, broaden removal objects, enhance pilot studies) of VUV-based water treatment technologies in future were prospected. Overall, VUV-based advanced oxidation processes are expected to be used in water treatment to improve process efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123175DOI Listing

Publication Analysis

Top Keywords

water treatment
12
unitary vuv
12
reactive species
12
vuv-based
10
vuv
9
uv-based processes
8
water wastewater
8
wastewater purification
8
multicomponent systems
8
vuv-based water
8

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Recent Biomedical Applications of Carbon Quantum Dots in Cancer Treatment.

J Phys Chem C Nanomater Interfaces

October 2024

Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.

Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.

View Article and Find Full Text PDF

This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF