Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The non-oxide BaGaSe (BGSe) crystal with broad transparency range, large nonlinearity, and high damage threshold has been widely utilized to build optical parametric oscillators/amplifiers that convert the well-developed near-infrared pump laser around 1 µm into the developing mid-infrared radiation. However, the inherent narrow phase-matching bandwidth of BGSe with a pump around 1 µm hampers the generation of ultrashort mid-infrared pulses. Here, we demonstrate that by pumping the BGSe crystal around 2 µm, it is possible to achieve a sufficient phase-matching bandwidth to support ultrashort pulses across a broad mid-infrared spectral range. In the experiments, two synchronized 1 kHz optical parametric chirped-pulse amplification sources centered at 2.35 µm and 3.1 µm are used to pump and seed a BGSe-based optical parametric amplifier, generating 52 µJ sub-four-cycle pulses at 9.7 µm. The central wavelength of the generated mid-infrared pulse can be tuned from 7 to 15 µm by finely adjusting the pump and seed wavelengths as well as the crystal orientation. These results reveal the enormous potential and bright prospects of BGSe for generating ultrashort intense pulses in the long-wave infrared region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.543119DOI Listing

Publication Analysis

Top Keywords

optical parametric
16
parametric amplifier
8
bgse crystal
8
phase-matching bandwidth
8
pump seed
8
bagase-based 7-15 µm
4
7-15 µm tunable
4
tunable broadband
4
optical
4
broadband optical
4

Similar Publications

Differences in the Corneal Biomechanical Responses to LASIK and KLEx Based on Parametric Numerical Simulation.

J Refract Surg

September 2025

From National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: To use parametric numerical simulation to characterize and compare the differences in corneal biomechanical responses to laser in situ keratomileusis (LASIK) and keratorefractive lenticule extraction (KLEx) under various surgical settings.

Methods: The Finite Element Model was used in a parametric study to evaluate corneal biomechanical responses to LASIK and KLEx, considering variations in preoperative corneal thickness, corneal flap/cap thickness and diameter, refractive correction, and optical zone diameter. Surgery-induced stress, displacement, and interface contact pressure were compared between LASIK and KLEx using the Wilcoxon signed-rank test.

View Article and Find Full Text PDF

Purpose: This study investigated how different data collection methods affect final restoration design and dynamic occlusal morphology.

Materials And Methods: Digital systems allow intraoral recording of functional occlusal paths through the digitally recorded functionally generated pathway (DRFGP) technique, using intraoral scanners and optical jaw tracking. Two substudies were conducted.

View Article and Find Full Text PDF

A Theoretical Investigation of Third-Order Optical Susceptibility in Metronidazolium-Picrate Crystal and Its Potential for Quantum Memory Applications.

ACS Omega

September 2025

Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, Anápolis, GO 75001-970, Brazil.

In this work, we report a theoretical investigation of the third-order nonlinear optical properties of the metronidazolium-picrate salt. The effects of the crystal environment are accounted for by the Iterative Charge Embedding approach, and the electronic calculations are carried out at the DFT (CAM-B3LYP/6-311++G-(d,p)) level. Furthermore, we use the results to parametrize a cavity Quantum Electrodynamics model for a quantum memory based on the Off-Resonant Cascaded Absorption protocol.

View Article and Find Full Text PDF

This study investigates soliton solutions and dynamic wave structures in the complex Ginzburg-Landau (CGL) equation, which is crucial for understanding wave propagation in various physical systems. We employ three analytical methods: the Kumar-Malik method, the generalized Arnous method, and the energy balance method to derive novel closed-form solutions. These solutions exhibit diverse solitonic phenomena, including multi-wave solitons, complex solitons, singular solitons, periodic oscillating waves, dark-wave, and bright-wave profiles.

View Article and Find Full Text PDF

Deep learning-enabled ultra-broadband terahertz high-dimensional photodetector.

Nat Commun

August 2025

State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.

Capturing multi-dimensional optical information is indispensable in modern optics. However, existing photodetectors can at best detect light fields whose wavelengths or polarizations are predefined at several specific values. Integrating broadband high-dimensional continuous photodetection including intensity, polarization, and wavelength within a single device still poses formidable challenges.

View Article and Find Full Text PDF