98%
921
2 minutes
20
Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide--methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers. The varying hydrogen bond strength leads to a broad distribution of structural activation energies, which in turn affects the range of characteristic time. In the presence of water, the weak hydrogen bond associations are easily disrupted under applied strain, enhancing segmental mobility and reducing relaxation time in the preyield regime, while in the postyield regime, the relaxation time increases slightly since the chain stretching increases the energy barrier. In creep tests, the creep strain rate accelerates at the initial stage due to stress-activated segments and then decelerates as chains are extensively stretched. The stress required for structural activation during creep is much lower than the Young's modulus of the gel, reflecting the poor structural stability. To further analyze the underlying mechanism of the glassy gel, a micromechanical model is established based on an extension on shear transformation zone theory. By incorporating a state variable for hydrogen bond density, this model can capture the intricate mechanical responses of glassy gels. Our findings reveal that glassy hydrogels are far from the thermodynamic equilibrium state, exhibiting rapid segment activation under external loading. This work provides insights to the dynamics and structural stability of glassy materials and can promote the design and applications of tough hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c22398 | DOI Listing |
ACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFAppl Psychophysiol Biofeedback
September 2025
Florida State University, Tallahassee, USA.
The explanation for how acutely stressful experiences could result in proximal health outcomes has been lacking in occupational health research. Although scholars have argued that individual personality and affect could worsen health behaviors, we believe that these qualities also could intensify the experience of acute stressors, potentially explaining why acutely stress encounters result in poor health outcomes for some people, but not others. Our study examines three individual differences - worry, negative affect, and positive affect - that are relevant to differential stress anticipation, reactivity, and recovery.
View Article and Find Full Text PDFLangmuir
September 2025
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.
View Article and Find Full Text PDFCompr Physiol
October 2025
School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia.
Mechanisms underlying cardiovascular, affective, and metabolic (CAM) multimorbidity are incompletely defined. We assessed how two risk factors-chronic stress (CS) and a Western diet (WD)-interact to influence cardiovascular function, resilience, adaptability, and allostatic load (AL); explore pathway involvement; and examine relationships with behavioral, metabolic, and systemic AL. Male C57Bl/6 mice (8 weeks old, n = 64) consumed a control (CD) or WD (12%-65%-23% or 32%-57%-11% calories from fat-carbohydrate-protein) for 17 weeks, with half subjected to 2 h daily restraint stress over the final 2 weeks (CD + CS and WD + CS).
View Article and Find Full Text PDFAsian Nurs Res (Korean Soc Nurs Sci)
September 2025
The Fourth Affiliated Hospital of Hebei Medical University; Address: The Fourth Affiliated Hospital of Hebei Medical University, No. 12 Jiankang Road, Chang'an District, Shijiazhuang City, Hebei Province, 050000, People's Republic of China. Electronic address:
Purpose: To examine the effectiveness of virtual reality (VR)-guided imagery relaxation (VRGI) intervention in reducing anxiety among lung cancer surgery patients.
Methods: A randomized clinical trial was conducted at the Fourth Affiliated Hospital of Hebei Medical University (Shijiazhuang, Hebei, China) to recruit patients scheduled for their first elective endoscopic lung cancer surgery under general anesthesia between December 2023 and March 2024. Patients were randomly assigned in a 1:1 ratio to either the control group, receiving routine treatment and staged care in thoracic surgery, or the experimental group, receiving VRGI intervention in addition to the control group's protocol.