98%
921
2 minutes
20
The development of advanced catalysts frequently employs trial-and-error methods and is lack of highly controlled synthesis, resulting in unsatisfactory development efficiency and performance. Here we propose a data-driven prediction coupled with precise synthesis strategy to accelerate the development of single-atom catalysts (SACs) for efficient water purification. The data-driven approach enables the rapid screening and prediction of high-performance SACs from 43 metals-N structures comprising transition and main group metal elements, followed by validation and structural modulation for improved performance through a highly controllable hard-template method. Impressively, a well-designed Fe-SAC with a high loading of Fe-pyridine-N sites (~3.83 wt %) and highly mesoporous structure, exhibits ultra-high decontamination performance (rate constant of 100.97 min g), representing the best Fenton-like activities for sulfonamide antibiotics to date. Furthermore, the optimized Fe-SAC shows excellent robust environmental resistance and cyclic stability with almost 100 % degradation efficiency of sulfonamide antibiotics for 100-h continuous operation. Density functional theory calculations reveal that Fe-pyridine-N sites can reduce the energy barrier of intermediate O* formation, the rate-determining step, resulting in highly selective generation of singlet oxygen. The integration of data-driven method with precise synthesis strategy provides a novel paradigm for the rapid development of high-performance catalysts for environmental field as well as other important fields including sustainable energy and catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202500004 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFNat Chem Biol
September 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.
View Article and Find Full Text PDFNat Commun
September 2025
CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchroton DESY, Leibniz Institute of Virology, University of Lübeck, Hamburg, Germany.
In coronavirus (CoV) infection, polyproteins (pp1a/pp1ab) are processed into non-structural proteins (nsps), which largely form the replication/transcription complex (RTC). The polyprotein processing and complex formation is critical and offers potential therapeutic targets. However, the interplay of polyprotein processing and RTC-assembly remains poorly understood.
View Article and Find Full Text PDF