A High-Capacity Manganese-Metal Battery with Dual-Storage Mechanism.

Angew Chem Int Ed Engl

Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a promising post lithium-ion-battery candidate, manganese metal battery (MMB) is receiving growing research interests because of its high volumetric capacity, low cost, high safety and high energy-to-price ratio. However, the low energy density, mainly constrained by scarce choices and unsatisfying capacity of cathodes, strictly bottlenecks the development of MMBs. In this work, a new class of cathodes based on novel dual-storage mechanism (DSM) are reported. Working principles of DSM are revealed and deeply understood via ex situ X-ray diffraction and X-ray photoelectron spectroscopy. Besides, a proof-of-concept DSM-based CuS cathode, which shows the highest specific capacity of 220 mAh g and 97.1 % higher energy density than previously reported cathodes in storing Mn ions, is presented. The key determinants on DSM and design strategies for next-generation cathodes are revealed via theoretical calculations. This work provides a new class of high-capacity cathode materials for MMBs, which is expected to draw inspirations to further enhance the energy density of MMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423921DOI Listing

Publication Analysis

Top Keywords

energy density
12
dual-storage mechanism
8
work class
8
high-capacity manganese-metal
4
manganese-metal battery
4
battery dual-storage
4
mechanism promising
4
promising post
4
post lithium-ion-battery
4
lithium-ion-battery candidate
4

Similar Publications

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF

Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.

View Article and Find Full Text PDF

Chemical C-N coupling from CO and N toward urea synthesis is an appealing approach for Bosch-Meiser urea production. However, this process faces significant challenges, including the difficulty of N activation, high energy barriers, and low selectivity. In this study, we theoretically designed a Ni triple-atom doped CuO catalyst, Ni TAC@CuO, which exhibits exceptional urea synthesis performance.

View Article and Find Full Text PDF