Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical practice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.e. the ability of equations to estimate measured GFR (mGFR) within 10%, 20% or 30%) of the European Kidney Function Consortium (EKFC) equation at the individual level.

Methods: This observational study used data from European and US cohorts, comprising 22,343 participants of all ages with available mGFR results. Four machine learning and two traditional logistic regression models were trained on a cohort of 9,202 participants to predict the likelihood of the EKFC creatinine-derived eGFR falling within 30% (p30), 20% (p20) or 10% (p10) of the mGFR value. The algorithms were internally and then externally validated on cohorts of respectively 3,034 and 10,107 participants. The predictors included in the models were creatinine, age, sex, height, weight, and EKFC.

Results: The random forest model was the most robust model. In the external validation cohort, the model achieved an area under the curve of 0.675 (95%CI 0.660;0.690) and an accuracy of 0.716 (95%CI 0.707;0.725) for the P30 criterion. Sensitivity was 0.756 (95%CI 0.747;0.765) and specificity was 0.485 (95%CI 0.460; 0.511) at the 80% probability level that EKFC falls within 30% of mGFR. At the population level, the PPV of this machine learning model was 89.5%, higher than the EKFC P30 of 85.2%. A free web-application was developed to allow the physician to assess the trustworthiness of EKFC at the individual level.

Conclusions: A strategy using machine learning model marginally improves the trustworthiness of GFR estimation at the population level. An additional value of this approach lies in its ability to provide assessments at the individual level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780799PMC
http://dx.doi.org/10.1186/s12882-025-03972-0DOI Listing

Publication Analysis

Top Keywords

machine learning
20
assess trustworthiness
12
glomerular filtration
8
filtration rate
8
learning models
8
models assess
8
measured gfr
8
clinical practice
8
population level
8
learning model
8

Similar Publications

This paper demonstrates how optimal policy learning can inform the targeted allocation of Indonesia's two subsidized health insurance programmes. Using national survey data, we develop policy rules aimed at minimizing "catastrophic health expenditure" among enrollees of APBD or APBN, the two government-funded schemes. Employing a super learner ensemble approach, we use regression and machine learning methods of varying complexity to estimate conditional average treatment effects and construct policy rules to optimize program benefits, both with and without budget constraints.

View Article and Find Full Text PDF

Machine Learning Parameters of Optimally Tuned Range-Separated Hybrid Functionals for Transition Metal Complexes.

J Phys Chem Lett

September 2025

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

In this work, we present a machine learning (ML) approach for predicting the optimal range separation parameters in transition metal complexes (TMCs), aiming to reduce the computational cost associated with optimally tuned range-separated hybrid (OT-RSH) functionals while preserving their accuracy. A data set containing 4380 TMCs was constructed by screening the tmQM database, with each TMC represented by a 62 087-dimensional multiple-fingerprint feature (MFF) vector and labeled with its optimally tuned range separation parameter. Multiple regression models were applied to train the prediction model, and the support vector machine (SVM) model yielded the best performance.

View Article and Find Full Text PDF

Salmonella typhimurium (S. typhimurium) A dual-mode colorimetric/photothermal immunochromatographic strip (ICS) employing hollow polydopamine nanoparticles (h-PDA) is reported for the ultrasensitive detection of Salmonella typhimurium (S. typhimurium).

View Article and Find Full Text PDF

Unlabelled: The study assesses the performance of AI models in evaluating postmenopausal osteoporosis. We found that ChatGPT-4o produced the most appropriate responses, highlighting the potential of AI to enhance clinical decision-making and improve patient care in osteoporosis management.

Purpose: The rise of artificial intelligence (AI) offers the potential for assisting clinical decisions.

View Article and Find Full Text PDF

Background: Undifferentiated pleomorphic sarcoma (UPS) is a prevalent soft tissue sarcoma subtype associated with poor prognosis. Current prognostic tools lack the ability to incorporate personalized data for predicting survival. Machine learning (ML) offers a potential solution to enhance survival prediction accuracy.

View Article and Find Full Text PDF