98%
921
2 minutes
20
Objectives: Studies have suggested that computer-aided polyp detection using artificial intelligence improves adenoma identification during colonoscopy. However, its real-world effectiveness remains unclear. Therefore, this study evaluated the usefulness of computer-aided detection during regular surveillance colonoscopy.
Methods: Consecutive patients who underwent surveillance colonoscopy with computer-aided detection between January and March 2023 and had undergone colonoscopy at least twice during the past 3 years were recruited. The clinicopathological findings of lesions identified using computer-aided detection were evaluated. The detection ability was sub-analyzed based on the expertise of the endoscopist and the presence of diminutive adenomas (size ≤5 mm).
Results: A total of 78 patients were included. Computer-aided detection identified 46 adenomas in 28 patients; however, no carcinomas were identified. The mean withdrawal time was 824 ± 353 s, and the mean tumor diameter was 3.3 mm (range, 2-8 mm). The most common gross type was 0-Is (70%), followed by 0-Isp (17%) and 0-IIa (13%). The most common tumor locations were the ascending colon and sigmoid colon (28%), followed by the transverse colon (26%), cecum (7%), descending colon (7%), and rectum (4%). Overall, 34.1% and 38.2% of patients with untreated diminutive adenomas and those with no adenomas, respectively, had newly detected adenomas. Endoscopist expertise did not affect the results.
Conclusions: Computer-aided detection may help identify adenomas during surveillance colonoscopy for patients with untreated diminutive adenomas and those with a history of endoscopic resection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772792 | PMC |
http://dx.doi.org/10.23922/jarc.2024-055 | DOI Listing |
PLoS One
September 2025
School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
Computer-aided diagnostic (CAD) systems for color fundus images play a critical role in the early detection of fundus diseases, including diabetes, hypertension, and cerebrovascular disorders. Although deep learning has substantially advanced automatic segmentation techniques in this field, several challenges persist, such as limited labeled datasets, significant structural variations in blood vessels, and persistent dataset discrepancies, which continue to hinder progress. These challenges lead to inconsistent segmentation performance, particularly for small vessels and branch regions.
View Article and Find Full Text PDFRep Pract Oncol Radiother
August 2025
University Teaching Department, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India.
Background: Cervical cancer (CC) is a leading cause of cancer-related deaths worldwide, emphasizing the need for accurate and efficient diagnostic tools. Traditional methods of cervical cell classification are time-consuming and susceptible to human error, highlighting the need for automated solutions.
Materials And Methods: This study introduces the modified hierarchical deep feature fusion (HDFF) method for cervical cell classification using the SIPaKMeD and Herlev datasets.
Front Bioeng Biotechnol
August 2025
Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Introduction: Colon cancer ranks among the most prevalent and lethal cancers globally, emphasizing the urgent need for accurate and early diagnostic tools. Recent advances in deep learning have shown promise in medical image analysis, offering potential improvements in detection accuracy and efficiency.
Methods: This study proposes a novel approach for classifying colon tissue images as normal or cancerous using Detectron2, a deep learning framework known for its superior object detection and segmentation capabilities.
Digit Health
September 2025
Department of Respiratory and Critical Care Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Objective: Accurate segmentation of breast lesions, especially small ones, remains challenging in digital mammography due to complex anatomical structures and low-contrast boundaries. This study proposes DVF-YOLO-Seg, a two-stage segmentation framework designed to improve feature extraction and enhance small-lesion detection performance in mammographic images.
Methods: The proposed method integrates an enhanced YOLOv10-based detection module with a segmentation stage based on the Visual Reference Prompt Segment Anything Model (VRP-SAM).
J Clin Periodontol
September 2025
Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Background And Objective: Traditional and planimetric plaque indices rely on plaque-disclosing agents and cannot quantify three-dimensional (3D) structures of dental biofilms. We introduce a novel computer-assisted method for evaluating and visualising plaque volume using intraoral scans (IOSs).
Materials And Methods: This was a 4-day, non-brushing, plaque-regrowth study (n = 15).