Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The plasma-activated water (PAW) containing numerous reactive species can facilitate chitin degradation. Given the intricate interplay between PAW treatment and the diverse activities of chitinolytic enzymes, further investigation is imperative for enhancing the chitin bioconversion efficiency. This study revealed that PAW-treated chitin exhibited improved degradability toward LPMO10A, endochitinases ChtI, ChtII-B4C1, and exochitinase Chi-h. Furthermore, HO in PAW boosted LPMO10A, whereas the soluble constituents in PAW generated during chitin pretreatment inhibited Chi-h. Notably, this inhibition effect toward Chi-h can be mitigated by the addition of β--acetylhexosaminidase. In the end, the synergy among the chitinolytic enzyme was also promoted by PAW pretreatment. On this as a basis, a chitin degradation strategy using a combination of PAW treatment and an enzyme cocktail was applied to degrade chitin, achieving a chitin conversion yield of 97% within 2 h. This strategy could also be applied to the degradation of other polysaccharides, such as cellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c08779 | DOI Listing |