Dual modality feature fused neural network integrating binding site information for drug target affinity prediction.

NPJ Digit Med

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurately predicting binding affinities between drugs and targets is crucial for drug discovery but remains challenging due to the complexity of modeling interactions between small drug and large targets. This study proposes DMFF-DTA, a dual-modality neural network model integrates sequence and graph structure information from drugs and proteins for drug-target affinity prediction. The model introduces a binding site-focused graph construction approach to extract binding information, enabling more balanced and efficient modeling of drug-target interactions. Comprehensive experiments demonstrate DMFF-DTA outperforms state-of-the-art methods with significant improvements. The model exhibits excellent generalization capabilities on completely unseen drugs and targets, achieving an improvement of over 8% compared to existing methods. Model interpretability analysis validates the biological relevance of the model. A case study in pancreatic cancer drug repurposing demonstrates its practical utility. This work provides an interpretable, robust approach to integrate multi-view drug and protein features for advancing computational drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775287PMC
http://dx.doi.org/10.1038/s41746-025-01464-xDOI Listing

Publication Analysis

Top Keywords

neural network
8
affinity prediction
8
drugs targets
8
drug discovery
8
drug
6
model
5
dual modality
4
modality feature
4
feature fused
4
fused neural
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF