Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Effective management of dual antiplatelet therapy (DAPT) following drug-eluting stent (DES) implantation is crucial for preventing adverse events. Traditional prognostic tools, such as rule-based methods or Cox regression, despite their widespread use and ease, tend to yield moderate predictive accuracy within predetermined timeframes. This study introduces a new contrastive learning-based approach to enhance prediction efficacy over multiple time intervals.

Methods: We utilized retrospective, real-world data from the OneFlorida + Clinical Research Consortium. Our study focused on two primary endpoints: ischemic and bleeding events, with prediction windows of 1, 2, 3, 6, and 12 months post-DES implantation. Our approach first utilized an auto-encoder to compress patient features into a more manageable, condensed representation. Following this, we integrated a Transformer architecture with multi-head attention mechanisms to focus on and amplify the most salient features, optimizing the representation for better predictive accuracy. Then, we applied contrastive learning to enable the model to further refine its predictive capabilities by maximizing intra-class similarities and distinguishing inter-class differences. Meanwhile, the model was holistically optimized using multiple loss functions, to ensure the predicted results closely align with the ground-truth values from various perspectives. We benchmarked model performance against three cutting-edge deep learning-based survival models, i.e., DeepSurv, DeepHit, and SurvTrace.

Results: The final cohort comprised 19,713 adult patients who underwent DES implantation with more than 1 month of records after coronary stenting. Our approach demonstrated superior predictive performance for both ischemic and bleeding events across prediction windows of 1, 2, 3, 6, and 12 months, with time-dependent concordance (C) index values ranging from 0.88 to 0.80 and 0.82 to 0.77, respectively. It consistently outperformed the baseline models, including DeepSurv, DeepHit, and SurvTrace, with statistically significant improvement in the C-index values for most evaluated scenarios.

Conclusion: The robust performance of our contrastive learning-based model underscores its potential to enhance DAPT management significantly. By delivering precise predictive insights at multiple time points, our method meets the current need for adaptive, personalized therapeutic strategies in cardiology, thereby offering substantial value in improving patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769931PMC
http://dx.doi.org/10.3389/fcvm.2024.1460354DOI Listing

Publication Analysis

Top Keywords

contrastive learning
8
des implantation
8
predictive accuracy
8
contrastive learning-based
8
multiple time
8
ischemic bleeding
8
bleeding events
8
events prediction
8
prediction windows
8
windows months
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

In this paper, we study the impact of momentum, volume and investor sentiment on U.S. tech sector stock returns using Principal Component Analysis-Hidden Markov Model (PCA-HMM) methodology.

View Article and Find Full Text PDF

Background: Interprofessional Education (IPE) is widely recognized as essential for fostering collaborative healthcare practices and improving patient outcomes. Despite its acknowledged importance, there remains a notable scarcity of longitudinal research assessing medical students' readiness for IPE across distinct educational stages, particularly within diverse global contexts like Brazil.

Aim: This study sought to address this gap by longitudinally mapping and analyzing the evolution of medical students' readiness for interprofessional learning throughout their academic training at a Brazilian university.

View Article and Find Full Text PDF

Limiting cognitive resources negatively impacts motor learning, but its cognitive mechanism is still unclear. Previous studies failed to differentiate its effect on explicit (or cognitive) and implicit (or procedural) aspects of motor learning. Here, we designed a dual-task paradigm requiring participants to simultaneously perform a visual working memory task and a visuomotor rotation adaptation task to investigate how cognitive load differentially impacted explicit and implicit motor learning.

View Article and Find Full Text PDF