98%
921
2 minutes
20
This study developed a portable arc iKnife ionization mass spectrometry (AII-MS) technique integrating a surgical knife with low-temperature arc plasma to interact with plant tissues. The thermal energy from the arc plasma induces the sputtering of water-containing plant tissues, leading to the formation of aerosols. These aerosols are then charged by plasma-generated ions, producing charged microdroplets that are ultimately detected by a mass spectrometer. AII-MS effectively mitigates the challenges of aerosol or tissue charring associated with arc ionization. Moreover, appropriate nitrogen cooling minimizes surface damage to plant samples, while the carrier gas facilitates the efficient generation and transfer of aerosols. Comparative analyses conducted before and after tissue cutting with a surgical knife revealed that this technology is well-suited for examining various fresh and dried plant tissues including seeds, fruits, leaves, roots, stems, flowers, and bark. The characteristic components were identified under both positive and negative ion modes. Notably, potassium nitrate was detected in various plant samples for the first time, which may be attributed to its extensive use as a nutrient in vegetable cultivation. In summary, the developed AII-MS can effectively be used for plant tissue analysis, demonstrating high throughput, environmental sustainability, rapid processing, and reliability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c05128 | DOI Listing |
Physiol Plant
September 2025
Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:
The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Department of Bioengineering, Imperial College London, London, UK.
Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China. Electr
The widespread coexistence of chiral herbicides and heavy metals (HMs) in agricultural soils poses significant ecological risks to crop safety, yet their combined ecotoxicological effects are not well understood. This study systematically investigated the enantiomer-specific effects of napropamide (R/S-NAP) on plant HMs accumulation. Results showed that S-NAP application reduced plant biomass and HMs accumulation, while R-NAP exhibited distinct effects, increasing root biomass and HMs accumulation in roots.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In
This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.
View Article and Find Full Text PDF