Gelatin-Based Adhesive Hydrogels with Self-Healing, Injectable and Temperature-Triggered Detachable Properties.

Macromol Biosci

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adhesive hydrogels are emerging as attractive functional materials for various fields, such as tissue engineering, wound healing, E-skins, etc. However, the removal of adhesive hydrogels from covered area may be painful and cause a secondary damage. In the current study, gelatin-based hydrogels are prepared by cross-linking with tannic acid and 4-formylphenyl boronic acid, through simultaneous dynamic covalent boronic ester and imine bond formations. The obtained hydrogels not only present self-healing and injectable properties, but also show tunable adhesiveness that regulated by temperature and oxidation degrees of tannic acid. The maximum adhesion strength of the hydrogels with medium oxidation degree at 37 °C can be measured up to 30 kPa on porcine skin, while the value decreased to ≈10 kPa at lowered temperature of 25 °C, facilitating the unpainful removal of the hydrogels from skins. This work provides a new approach for the design of functional hydrogels with tailorable adhesiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202400566DOI Listing

Publication Analysis

Top Keywords

adhesive hydrogels
12
hydrogels
8
hydrogels self-healing
8
self-healing injectable
8
tannic acid
8
gelatin-based adhesive
4
injectable temperature-triggered
4
temperature-triggered detachable
4
detachable properties
4
properties adhesive
4

Similar Publications

Skin-adaptive focused flexible micromachined ultrasound transducers for wearable cardiovascular health monitoring.

Sci Adv

September 2025

State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En

Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF