98%
921
2 minutes
20
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756815 | PMC |
http://dx.doi.org/10.1002/adtp.202400296 | DOI Listing |
Mater Today Bio
October 2025
Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Joseph D. & Millie E. Williams Science Hall, 525 S 42nd St, Room No 3.0.010, Omaha, NE 68105-6040, USA.
Facial nerve injuries cause significant functional impairments, affect facial expressions, speech, and overall quality of life. This article explores advances in facial nerve regeneration, encompassing both conventional and emerging therapeutic strategies. The regenerative process involves Wallerian degeneration, axonal regrowth, and target muscle reinnervation, where the distal axon degrades and the proximal axon initiates sprouting to restore connectivity.
View Article and Find Full Text PDFNat Mater
September 2025
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China.
Hepatocellular carcinoma (HCC) represents a major global health burden due to its high recurrence and mortality rates. For patients with advanced HCC and compromised liver function, Pharmacotherapy has become the primary approach due to the limited efficacy of conventional treatments (e.g.
View Article and Find Full Text PDFJ Texture Stud
October 2025
Division of Physiology, Kyushu Dental University, Fukuoka, Japan.
Food texture is a pivotal factor influencing consumer preference, acceptance, and eating experience. Although human sensory studies have underscored the importance of the sensations of springiness and hardness in mastication and swallowing, the underlying mechanisms remain unknown due to the lack of an animal model. We therefore hypothesized that rats can discriminate textures based on mechanical properties-springiness and hardness-independent of taste, odor, and visual cues.
View Article and Find Full Text PDF